Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Immunol ; 257: 109817, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37925120

RESUMEN

A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies (IgG4-AID). Why IgG4 predominates in these disorders is unknown. We hypothesized that dysregulated B cell maturation or aberrant class switching causes overrepresentation of IgG4+ B cells and plasma cells. Therefore, we compared the B cell compartment of patients from four different IgG4-AID with two IgG1-3-AID and healthy donors, using flow cytometry. Relative subset abundance at all maturation stages was normal, except for a, possibly treatment-related, reduction in immature and naïve CD5+ cells. IgG4+ B cell and plasma cell numbers were normal in IgG4-AID patients, however they had a (sub)class-independent 8-fold increase in circulating CD20-CD138+ cells. No autoreactivity was found in this subset. These results argue against aberrant B cell development and rather suggest the autoantibody subclass predominance to be antigen-driven. The similarities between IgG4-AID suggest that, despite displaying variable clinical phenotypes, they share a similar underlying immune profile.


Asunto(s)
Autoanticuerpos , Enfermedades Autoinmunes , Humanos , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G , Linfocitos B
2.
Rheumatology (Oxford) ; 61(6): 2682-2693, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34559222

RESUMEN

OBJECTIVE: SSc is a complex disease characterized by vascular abnormalities and inflammation culminating in hypoxia and excessive fibrosis. Previously, we identified chemokine (C-X-C motif) ligand 4 (CXCL4) as a novel predictive biomarker in SSc. Although CXCL4 is well-studied, the mechanisms driving its production are unclear. The aim of this study was to elucidate the mechanisms leading to CXCL4 production. METHODS: Plasmacytoid dendritic cells (pDCs) from 97 healthy controls and 70 SSc patients were cultured in the presence of hypoxia or atmospheric oxygen level and/or stimulated with several toll-like receptor (TLR) agonists. Further, pro-inflammatory cytokine production, CXCL4, hypoxia-inducible factor (HIF) -1α and HIF-2α gene and protein expression were assessed using ELISA, Luminex, qPCR, FACS and western blot assays. RESULTS: CXCL4 release was potentiated only when pDCs were simultaneously exposed to hypoxia and TLR9 agonist (P < 0.0001). Here, we demonstrated that CXCL4 production is dependent on the overproduction of mitochondrial reactive oxygen species (mtROS) (P = 0.0079) leading to stabilization of HIF-2α (P = 0.029). In addition, we show that hypoxia is fundamental for CXCL4 production by umbilical cord CD34 derived pDCs. CONCLUSION: TLR-mediated activation of immune cells in the presence of hypoxia underpins the pathogenic production of CXCL4 in SSc. Blocking either mtROS or HIF-2α pathways may therapeutically attenuate the contribution of CXCL4 to SSc and other inflammatory diseases driven by CXCL4.


Asunto(s)
Factor Plaquetario 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Esclerodermia Sistémica , Receptor Toll-Like 9 , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Dendríticas/metabolismo , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia
3.
Int J Mol Sci ; 20(17)2019 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-31450682

RESUMEN

Cells are exposed to reactive oxygen species (ROS) as a by-product of mitochondrial metabolism, especially under hypoxia. ROS are also enzymatically generated at the plasma membrane during inflammation. Radicals cause cellular damage leading to cell death, as they react indiscriminately with surrounding lipids, proteins, and nucleotides. However, ROS are also important for many physiological processes, including signaling, pathogen killing and chemotaxis. The sensitivity of cells to ROS therefore likely depends on the subcellular location of ROS production, but how this affects cell viability is poorly understood. As ROS generation consumes oxygen, and hypoxia-mediated signaling upregulates expression of antioxidant transcription factor Nrf2, it is difficult to discern hypoxic from radical stress. In this study, we developed an optogenetic toolbox for organelle-specific generation of ROS using the photosensitizer protein SuperNova which produces superoxide anion upon excitation with 590 nm light. We fused SuperNova to organelle specific localization signals to induce ROS with high precision. Selective ROS production did not affect cell viability in most organelles except for the nucleus. SuperNova is a promising tool to induce locally targeted ROS production, opening up new possibilities to investigate processes and organelles that are affected by localized ROS production.


Asunto(s)
Núcleo Celular/metabolismo , Radicales Libres/metabolismo , Orgánulos/metabolismo , Estrés Oxidativo , Animales , Biomarcadores , Células COS , Muerte Celular , Núcleo Celular/genética , Chlorocebus aethiops , Daño del ADN , Especies Reactivas de Oxígeno/metabolismo
4.
Front Immunol ; 10: 1216, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191556

RESUMEN

Neutrophils kill ingested pathogens by the so-called oxidative burst, where reactive oxygen species (ROS) are produced in the lumen of phagosomes at very high rates (mM/s), although these rates can only be maintained for a short period (minutes). In contrast, dendritic cells produce ROS at much lower rates, but they can sustain production for much longer after pathogen uptake (hours). It is becoming increasingly clear that this slow but prolonged ROS production is essential for antigen cross-presentation to activate cytolytic T cells, and for shaping the repertoire of antigen fragments for presentation to helper T cells. However, despite this importance of ROS production by dendritic cells for activation of the adaptive immune system, their actual ROS production rates have never been quantified. Here, we quantified ROS production in human monocyte-derived dendritic cells by measuring the oxygen consumption rate during phagocytosis. Although a large variation in oxygen consumption and phagocytic capacity was present among individuals and cells, we estimate a ROS production rate of on average ~0.5 mM/s per phagosome. Quantitative microscopy approaches showed that ROS is produced within minutes after pathogen encounter at the nascent phagocytic cup. H2DCFDA measurements revealed that ROS production is sustained for at least ~10 h after uptake. While ROS are produced by dendritic cells at an about 10-fold lower rate than by neutrophils, the net total ROS production is approximately similar. These are the first quantitative estimates of ROS production by a cell capable of antigen cross-presentation. Our findings provide a quantitative insight in how ROS affect dendritic cell function.


Asunto(s)
Células Dendríticas/metabolismo , Monocitos/citología , Fagosomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Reactividad Cruzada , Células Dendríticas/efectos de los fármacos , Células Dendríticas/ultraestructura , Fluoresceínas/metabolismo , Colorantes Fluorescentes/metabolismo , Humanos , Cinética , Lipopéptidos/farmacología , Lipopolisacáridos/farmacología , Ratones , NADPH Oxidasa 2/metabolismo , Consumo de Oxígeno , Fosfoproteínas/metabolismo , Células RAW 264.7 , Superóxidos/metabolismo , Zimosan/farmacología
5.
Oncotarget ; 10(8): 883-896, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30783517

RESUMEN

Solid tumors grow at a high speed leading to insufficient blood supply to tumor cells. This makes the tumor hypoxic, resulting in the Warburg effect and an increased generation of reactive oxygen species (ROS). Hypoxia and ROS affect immune cells in the tumor micro-environment, thereby affecting their immune function. Here, we review the known effects of hypoxia and ROS on the function and physiology of dendritic cells (DCs). DCs can (cross-)present tumor antigen to activate naive T cells, which play a pivotal role in anti-tumor immunity. ROS might enter DCs via aquaporins in the plasma membrane, diffusion across the plasma membrane or via extracellular vesicles (EVs) released by tumor cells. Hypoxia and ROS exert complex effects on DCs, and can both inhibit and activate maturation of immature DCs. Furthermore, ROS transferred by EVs and/or produced by the DC can both promote antigen (cross-)presentation through phagosomal alkalinization, which preserves antigens by inhibiting proteases, and by direct oxidative modification of proteases. Hypoxia leads to a more migratory and inflammatory DC phenotype. Lastly, hypoxia alters DCs to shift the T- cell response towards a tumor suppressive Th17 phenotype. From numerous studies, the concept is emerging that hypoxia and ROS are mutually dependent effectors on DC function in the tumor micro-environment. Understanding their precise roles and interplay is important given that an adaptive immune response is required to clear tumor cells.

6.
Biosci Rep ; 38(6)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463908

RESUMEN

Dendritic cells (DCs) constantly sample peripheral tissues for antigens, which are subsequently ingested to derive peptides for presentation to T cells in lymph nodes. To do so, DCs have to traverse many different tissues with varying oxygen tensions. Additionally, DCs are often exposed to low oxygen tensions in tumors, where vascularization is lacking, as well as in inflammatory foci, where oxygen is rapidly consumed by inflammatory cells during the respiratory burst. DCs respond to oxygen levels to tailor immune responses to such low-oxygen environments. In the present study, we identified a mechanism of hypoxia-mediated potentiation of release of tumor necrosis factor α (TNF-α), a pro-inflammatory cytokine with important roles in both anti-cancer immunity and autoimmune disease. We show in human monocyte-derived DCs (moDCs) that this potentiation is controlled exclusively via the p38/mitogen-activated protein kinase (MAPK) pathway. We identified MAPK kinase kinase 8 (MAP3K8) as a target gene of hypoxia-induced factor (HIF), a transcription factor controlled by oxygen tension, upstream of the p38/MAPK pathway. Hypoxia increased expression of MAP3K8 concomitant with the potentiation of TNF-α secretion. This potentiation was no longer observed upon siRNA silencing of MAP3K8 or with a small molecule inhibitor of this kinase, and this also decreased p38/MAPK phosphorylation. However, expression of DC maturation markers CD83, CD86, and HLA-DR were not changed by hypoxia. Since DCs play an important role in controlling T-cell activation and differentiation, our results provide novel insight in understanding T-cell responses in inflammation, cancer, autoimmune disease and other diseases where hypoxia is involved.


Asunto(s)
Células Dendríticas/inmunología , Hipoxia/inmunología , Inflamación/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Proteínas Proto-Oncogénicas/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Hipoxia de la Célula , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/metabolismo , Humanos , Hipoxia/genética , Inflamación/genética , Quinasas Quinasa Quinasa PAM/genética , Monocitos/citología , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptor Toll-Like 4/inmunología , Regulación hacia Arriba
7.
Sci Rep ; 7(1): 6889, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761087

RESUMEN

Ethylene is a major plant hormone mediating developmental processes and stress responses to stimuli such as infection. We show here that ethylene is also produced during systemic inflammation in humans and is released in exhaled breath. Traces of ethylene were detected by laser spectroscopy both in vitro in isolated blood leukocytes exposed to bacterial lipopolysaccharide (LPS) as well as in vivo following LPS administration in healthy volunteers. Exposure to LPS triggers formation of ethylene as a product of lipid peroxidation induced by the respiratory burst. In humans, ethylene was detected prior to the increase of blood levels of inflammatory cytokines and stress-related hormones. Our results highlight that ethylene release is an early and integral component of in vivo lipid peroxidation with important clinical implications as a breath biomarker of bacterial infection.


Asunto(s)
Etilenos/análisis , Inflamación/metabolismo , Leucocitos/metabolismo , Lipopolisacáridos/efectos adversos , Adulto , Biomarcadores/análisis , Pruebas Respiratorias , Citocinas/metabolismo , Voluntarios Sanos , Humanos , Inflamación/inducido químicamente , Inflamación/inmunología , Leucocitos/efectos de los fármacos , Peroxidación de Lípido , Lipopolisacáridos/farmacología , Masculino , Estallido Respiratorio , Adulto Joven
8.
Eur J Cell Biol ; 96(7): 705-714, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28688576

RESUMEN

Cross-presentation of foreign antigen in major histocompatibility complex (MHC) class I by dendritic cells (DCs) requires activation of the NADPH-oxidase NOX2 complex. We recently showed that NOX2 is recruited to phagosomes by the SNARE protein VAMP8 where NOX2-produced reactive oxygen species (ROS) cause lipid oxidation and membrane disruption, promoting antigen translocation into the cytosol for cross-presentation. In this study, we extend these findings by showing that VAMP8 is also involved in NOX2 trafficking to endosomes. Moreover, we demonstrate in both human and mouse DCs that absence of VAMP8 leads to decreased ROS production, lipid peroxidation and antigen translocation, and that this impairs cross-presentation. In contrast, knockdown of VAMP8 did not affect recruitment of MHC class I and the transporter associated with antigen processing 1 (TAP1) to phagosomes, although surface levels of MHC class I were reduced. Thus, in addition to a secretory role, VAMP8-mediates trafficking of NOX2 to endosomes and phagosomes and this promotes induction of cytolytic T cell immune responses.


Asunto(s)
Presentación de Antígeno/genética , Células Dendríticas/inmunología , NADPH Oxidasa 2/genética , Proteínas R-SNARE/genética , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/inmunología , Animales , Presentación de Antígeno/inmunología , Membrana Celular/genética , Membrana Celular/inmunología , Endosomas/genética , Endosomas/inmunología , Genes MHC Clase I/inmunología , Humanos , Peroxidación de Lípido , Ratones , NADPH Oxidasa 2/inmunología , Fagosomas/genética , Fagosomas/inmunología , Proteínas R-SNARE/inmunología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T Citotóxicos/inmunología
9.
Nat Commun ; 7: 13127, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27721497

RESUMEN

Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters. Pattern formation and magnitude depend on the cluster actomyosin machinery. Indeed, nanoscopy reveals myosin IIA-decorated actin filaments interconnecting multiple proximal podosomes. Extending well-beyond podosome nearest neighbours, the actomyosin-dependent dynamic spatial patterns reveal a previously unappreciated mesoscale connectivity throughout the podosome clusters. This directional transport and continuous redistribution of podosome components provides a mechanistic explanation of how podosome clusters function as coordinated mechanosensory area.


Asunto(s)
Actomiosina/metabolismo , Citoesqueleto/metabolismo , Podosomas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Extensiones de la Superficie Celular/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Humanos , Modelos Biológicos , Miosina Tipo IIA no Muscular/metabolismo , Polimerizacion , Reología , Talina/metabolismo , Factores de Tiempo , Vinculina/metabolismo
10.
Sci Rep ; 6: 22064, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26907999

RESUMEN

Dendritic cells (DCs) present foreign antigen in major histocompatibility complex (MHC) class I molecules to cytotoxic T cells in a process called cross-presentation. An important step in this process is the release of antigen from the lumen of endosomes into the cytosol, but the mechanism of this step is still unclear. In this study, we show that reactive oxygen species (ROS) produced by the NADPH-oxidase complex NOX2 cause lipid peroxidation, a membrane disrupting chain-reaction, which in turn results in antigen leakage from endosomes. Antigen leakage and cross-presentation were inhibited by blocking ROS production or scavenging radicals and induced when using a ROS-generating photosensitizer. Endosomal antigen release was impaired in DCs from chronic granulomatous disease (CGD) patients with dysfunctional NOX2. Thus, NOX2 induces antigen release from endosomes for cross-presentation by direct oxidation of endosomal lipids. This constitutes a new cellular function for ROS in regulating immune responses against pathogens and cancer.


Asunto(s)
Reactividad Cruzada , Células Dendríticas/inmunología , Enfermedad Granulomatosa Crónica/inmunología , Peroxidación de Lípido/inmunología , Glicoproteínas de Membrana/inmunología , NADPH Oxidasas/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Presentación de Antígeno , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Endosomas/inmunología , Endosomas/metabolismo , Depuradores de Radicales Libres/farmacología , Expresión Génica , Enfermedad Granulomatosa Crónica/metabolismo , Enfermedad Granulomatosa Crónica/patología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Células Jurkat , Peroxidación de Lípido/efectos de los fármacos , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Fármacos Fotosensibilizantes/farmacología , Cultivo Primario de Células , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/efectos de los fármacos , alfa-Tocoferol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...