Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
MethodsX ; 13: 102940, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39290470

RESUMEN

This paper provides a simple method for producing a metal oxide thin layer methodology by atmospheric pressure chemical vapor deposition (APCVD) synthesis over stainless steel substrates. This methodology enables the formation of thin iron oxide layers at its performance at various temperatures of 330 °C, 430 °C, and 530 °C. The deposition arises from thermal decomposition of the iron organometallic precursor Fe3(CO)12, forming a thin layer of iron oxide is, by the ozone present in the reaction chamber promoting the deposition of the iron oxide particles over the substrate. The Raman characterization suggest that at 330 °C, a mixture of hematite and magnetite is predominant on the as deposited substrates, also hematite modes show to be more pronounced as the band at 300 cm-1 narrows. Conversely, magnetite is prominent at higher synthesis temperatures, exhibiting a more intense Eg5 mode at 680 cm-1. The particles exhibit a uniform morphology, with both metal oxide phases coexisting. The average diameter of the particles is 50 nanometers as scanning electronic microscopy shows in a transversal sample section.•The formation of particles is attributed to the combination of iron ions +2 and +3 in the deposition process and their interaction with oxygen in the given synthesis parameters at atmospheric pressure chemical vapor deposition (APCVD).

2.
Gels ; 9(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37623073

RESUMEN

Inorganic arsenic in drinking water from groundwater sources is one of the potential causes of arsenic-contaminated environments, and it is highly toxic to human health even at low concentrations. The purpose of this study was to develop a magnetic adsorbent capable of removing arsenic from water. Fe3O4-monolithic resorcinol-formaldehyde carbon xerogels are a type of porous material that forms when resorcinol and formaldehyde (RF) react to form a polymer network, which is then cross-linked with magnetite. Sonication-assisted direct and indirect methods were investigated for loading Fe3O4 and achieving optimal mixing and dispersion of Fe3O4 in the RF solution. Variations of the molar ratios of the catalyst (R/C = 50, 100, 150, and 200), water (R/W = 0.04 and 0.05), and Fe3O4 (M/R = 0.01, 0.03, 0.05, 0.1, 0.15, and 0.2), and thermal treatment were applied to evaluate their textural properties and adsorption capacities. Magnetic carbon xerogel monoliths (MXRF600) using indirect sonication were pyrolyzed at 600 °C for 6 h with a nitrogen gas flow in the tube furnace. Nanoporous carbon xerogels with a high surface area (292 m2/g) and magnetic properties were obtained. The maximum monolayer adsorption capacity of As(III) and As(V) was 694.3 µg/g and 1720.3 µg/g, respectively. The incorporation of magnetite in the xerogel structure was physical, without participation in the polycondensation reaction, as confirmed by XRD, FTIR, and SEM analysis. Therefore, Fe3O4-monolithic resorcinol-formaldehyde carbon xerogels were developed as a potential adsorbent for the effective removal of arsenic with low and high ranges of As(III) and As(V) concentrations from groundwater.

3.
Polymers (Basel) ; 15(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38231907

RESUMEN

Most commercially available polymers are synthesized from compounds derived from petroleum, a finite resource. Because of this, there is a growing interest in the synthesis of new polymeric materials using renewable monomers. Following this concept, this work reports on the use of muconic acid as a renewable source for the development of new polyamides that can be used as proton-exchange membranes. Muconic acid was used as a comonomer in polycondensation reactions with 4,4'-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline, 2,5-diaminobencensulfonic acid, and 4,4'-diamino-2,2'-stilbenedisulfonic acid as comonomers in the synthesis of two new series of partially renewable aromatic-aliphatic polyamides, in which the degree of sulfonation was varied. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F-NMR) techniques were used to confirm the chemical structures of the new polyamides. It was also observed that the degree of sulfonation was proportional to the molar ratio of the diamines in the feed. Subsequently, membranes were prepared by casting, and a complete characterization was conducted to determine their decomposition temperature (Td), glass transition temperature (Tg), density (ρ), and other physical properties. In addition, water uptake (Wu), ion-exchange capacity (IEC), and proton conductivity (σp) were determined for these membranes. Electrochemical impedance spectroscopy (EIS) was used to determine the conductivity of the membranes. MUFASA34 exhibited a σp value equal to 9.89 mS·cm-1, being the highest conductivity of all the membranes synthesized in this study.

4.
Polymers (Basel) ; 13(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396908

RESUMEN

The future availability of synthetic polymers is compromised due to the continuous depletion of fossil reserves; thus, the quest for sustainable and eco-friendly specialty polymers is of the utmost importance to ensure our lifestyle. In this regard, this study reports on the use of oleic acid as a renewable source to develop new ionomers intended for proton exchange membranes. Firstly, the cross-metathesis of oleic acid was conducted to yield a renewable and unsaturated long-chain aliphatic dicarboxylic acid, which was further subjected to polycondensation reactions with two aromatic diamines, 4,4'-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline and 4,4'-diamino-2,2'-stilbenedisulfonic acid, as comonomers for the synthesis of a series of partially renewable aromatic-aliphatic polyamides with an increasing degree of sulfonation (DS). The polymer chemical structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F NMR) spectroscopy, which revealed that the DS was effectively tailored by adjusting the feed molar ratio of the diamines. Next, we performed a study involving the ion exchange capacity, the water uptake, and the proton conductivity in membranes prepared from these partially renewable long-chain polyamides, along with a thorough characterization of the thermomechanical and physical properties. The highest value of the proton conductivity determined by electrochemical impedance spectroscopy (EIS) was found to be 1.55 mS cm-1 at 30 °C after activation of the polymer membrane.

5.
Microorganisms ; 7(11)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652874

RESUMEN

Consolidated bioprocessing (CBP), which integrates biological pretreatment, enzyme production, saccharification, and fermentation, is a promising operational strategy for cost-effective ethanol production from biomass. In this study, the use of a native strain of Trametes hirsuta (Bm-2) was evaluated for bioethanol production from Brosimum alicastrum in a CBP. The raw seed flour obtained from the ramon tree contained 61% of starch, indicating its potential as a raw material for bioethanol production. Quantitative assays revealed that the Bm-2 strain produced the amylase enzyme with activity of 193.85 U/mL. The Bm-2 strain showed high tolerance to ethanol stress and was capable of directly producing ethanol from raw flour at a concentration of 13 g/L, with a production yield of 123.4 mL/kg flour. This study demonstrates the potential of T. hirsuta Bm-2 for starch-based ethanol production in a consolidated bioprocess to be implemented in the biofuel industry. The residual biomass after fermentation showed an average protein content of 22.5%, suggesting that it could also be considered as a valuable biorefinery co-product for animal feeding.

6.
BMC Biotechnol ; 14: 102, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25487741

RESUMEN

BACKGROUND: A laboratory-scale two-chamber microbial fuel cell employing an aerated cathode with no catalyst was inoculated with mixed inoculum and acetate as the carbon source. Electrochemical impedance spectroscopy (EIS) was used to study the behavior of the MFC during initial biofilm (week 1) and maximum power density (week 20). EIS were performed on the anode chamber, biofilm (without anolyte) and anolyte (without biofilm). Nyquist plots of the EIS data were fitted with two equivalent electrical circuits to estimate the contributions of intrinsic resistances to the overall internal MFC impedance at weeks 1 and 20, respectively. RESULTS: The results showed that the system tended to increase power density from 15 ± 3 (week 1) to 100 ± 15 mW/m(2) (week 20) and current density 211 ± 7 (week 1) to 347 ± 29 mA/m(2) (week 20). The Samples were identified by pyrosequencing of the 16S rRNA gene and showed that initial inoculum (week 1) was constituted by Proteobacteria (40%), Bacteroidetes (22%) and Firmicutes (18%). At week 20, Proteobacterial species were predominant (60%) for electricity generation in the anode biofilm, being 51% Rhodopseudomonas palustris. Meanwhile on anolyte, Firmicutes phylum was predominant with Bacillus sp. This study proved that under the experimental conditions used there is an important contribution from the interaction of the biofilm and the anolyte on cell performance. Table 1 presents a summary of the specific influence of each element of the system under study. CONCLUSIONS: The results showed certain members of the bacterial electrode community increased in relative abundance from the initial inoculum. For example, Proteobacterial species are important for electricity generation in the anode biofilms and Firmicutes phylum was predominant on anolyte to transfer electron. R1 is the same in the three systems and no variation is observed over time. The biofilm makes a significant contribution to the charge transfer processes at the electrode (R2 and Cdl) and, consequently, on the performance of the anode chamber. The biofilm can act as a barrier which reduces diffusion of the anolyte towards the electrode, all the while behaving like a porous material. The anolyte and its interaction with the biofilm exert a considerable influence on diffusion processes, given that it presents the highest values for Rd which increased at week 20.


Asunto(s)
Bacterias/crecimiento & desarrollo , Fuentes de Energía Bioeléctrica/microbiología , Bacterias/química , Biopelículas/crecimiento & desarrollo , Impedancia Eléctrica , Electricidad , Electrodos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...