Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38806299

RESUMEN

Mitochondrial genetic defects caused by whole-body mutations typically affect different tissues in different ways. Elucidating the molecular determinants that cause certain cell types to be primarily affected has become a critical research target within the field. We propose a differential activation of the integrated stress response as a potential contributor to this tissue specificity.

2.
Orphanet J Rare Dis ; 19(1): 148, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582886

RESUMEN

BACKGROUND: Most patients suffering from Leber hereditary optic neuropathy carry one of the three classic pathologic mutations, but not all individuals with these genetic alterations develop the disease. There are different risk factors that modify the penetrance of these mutations. The remaining patients carry one of a set of very rare genetic variants and, it appears that, some of the risk factors that modify the penetrance of the classical pathologic mutations may also affect the phenotype of these other rare mutations. RESULTS: We describe a large family including 95 maternally related individuals, showing 30 patients with Leber hereditary optic neuropathy. The mutation responsible for the phenotype is a novel transition, m.3734A > G, in the mitochondrial gene encoding the ND1 subunit of respiratory complex I. Molecular-genetic, biochemical and cellular studies corroborate the pathogenicity of this genetic change. CONCLUSIONS: With the study of this family, we confirm that, also for this very rare mutation, sex and age are important factors modifying penetrance. Moreover, this pedigree offers an excellent opportunity to search for other genetic or environmental factors that additionally contribute to modify penetrance.


Asunto(s)
ADN Mitocondrial , Atrofia Óptica Hereditaria de Leber , Humanos , ADN Mitocondrial/genética , Atrofia Óptica Hereditaria de Leber/genética , Linaje , Mutación/genética , Fenotipo
3.
Orphanet J Rare Dis ; 17(1): 316, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986281

RESUMEN

Population frequency has been one of the most widely used criteria to help assign pathogenicity to newly described mitochondrial DNA variants. However, after sequencing this molecule in thousands of healthy individuals, it has been observed that a very large number of genetic variants have a very low population frequency, which has raised doubts about the utility of this criterion. By analyzing the genetic variation of mitochondrial DNA-encoded genes for oxidative phosphorylation subunits in 195,983 individuals from HelixMTdb that were not sequenced based on any medical phenotype, we show that rare variants are deleterious and, along with other criteria, population frequency is still a useful criterion to assign pathogenicity to newly described variants.


Asunto(s)
ADN Mitocondrial , Mitocondrias , ADN Mitocondrial/genética , Mitocondrias/genética , Fenotipo , Virulencia
4.
Clin Genet ; 102(4): 339-344, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35808913

RESUMEN

Leber hereditary optic neuropathy is a mitochondrial disease mainly due to pathologic mutations in mitochondrial genes related to the respiratory complex I of the oxidative phosphorylation system. Genetic, physiological, and environmental factors modulate the penetrance of these mutations. We report two patients suffering from this disease and harboring a m.15950G > A mutation in the mitochondrial DNA-encoded gene for the threonine transfer RNA. We also provide evidences supporting the pathogenicity of this mutation.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Humanos , Mutación , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/patología , ARN de Transferencia/genética
6.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613915

RESUMEN

Heredity of familial hypercholesterolemia (FH) can present as a dominant monogenic disorder of polygenic origin or with no known genetic cause. In addition, the variability of the symptoms among individuals or within the same families evidence the potential contribution of additional factors than monogenic mutations that could modulate the development and severity of the disease. In addition, statins, the lipid-lowering drugs which constitute the first-line therapy for the disease, cause associated muscular symptoms in a certain number of individuals. Here, we analyze the evidence of the mitochondrial genetic variation with a special emphasis on the role of CoQ10 to explain this variability found in both disease symptoms and statins side effects. We propose to use mtDNA variants and copy numbers as markers for the cardiovascular disease development of FH patients and to predict potential statin secondary effects and explore new mechanisms to identify new markers of disease or implement personalized medicine strategies for FH therapy.


Asunto(s)
Aterosclerosis , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hiperlipoproteinemia Tipo II , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Hiperlipoproteinemia Tipo II/complicaciones , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Hiperlipoproteinemia Tipo II/genética , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/complicaciones , Hipolipemiantes/uso terapéutico , Antecedentes Genéticos
7.
Cells ; 10(7)2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34359917

RESUMEN

Protein homeostasis is an equilibrium of paramount importance that maintains cellular performance by preserving an efficient proteome. This equilibrium avoids the accumulation of potentially toxic proteins, which could lead to cellular stress and death. While the regulators of proteostasis are the machineries controlling protein production, folding and degradation, several other factors can influence this process. Here, we have considered two factors influencing protein turnover: the subcellular localization of a protein and its functional state. For this purpose, we used an imaging approach based on the pulse-labeling of 17 representative SNAP-tag constructs for measuring protein lifetimes. With this approach, we obtained precise measurements of protein turnover rates in several subcellular compartments. We also tested a selection of mutants modulating the function of three extensively studied proteins, the Ca2+ sensor calmodulin, the small GTPase Rab5a and the brain creatine kinase (CKB). Finally, we followed up on the increased lifetime observed for the constitutively active Rab5a (Q79L), and we found that its stabilization correlates with enlarged endosomes and increased interaction with membranes. Overall, our data reveal that both changes in protein localization and functional state are key modulators of protein turnover, and protein lifetime fluctuations can be considered to infer changes in cellular behavior.


Asunto(s)
Proteínas/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Reproducibilidad de los Resultados , Fracciones Subcelulares/metabolismo
8.
Genes (Basel) ; 12(7)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34356047

RESUMEN

In human mitochondria, mtDNA encodes for only 13 proteins, all components of the OXPHOS system. The rest of the mitochondrial components, which make up approximately 99% of its proteome, are encoded in the nuclear genome, synthesized in cytosolic ribosomes and imported into mitochondria. Different import machineries translocate mitochondrial precursors, depending on their nature and the final destination inside the organelle. The proper and coordinated function of these molecular pathways is critical for mitochondrial homeostasis. Here, we will review molecular details about these pathways, which components have been linked to human disease and future perspectives on the field to expand the genetic landscape of mitochondrial diseases.


Asunto(s)
Mitocondrias/genética , Proteínas Mitocondriales/genética , Transporte de Proteínas/genética , Citosol/metabolismo , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales , Proteínas Mitocondriales/metabolismo , Mutación , Transporte de Proteínas/fisiología , Ribosomas
9.
Orphanet J Rare Dis ; 16(1): 64, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541401

RESUMEN

BACKGROUND: Leber hereditary optic neuropathy (LHON) is the most common mitochondrial disorder and characterized by acute or subacute painless visual loss. Environmental factors reported to trigger visual loss in LHON mutation carriers include smoking, heavy intake of alcohol, raised intraocular pressure, and some drugs, including several carbonic anhydrase inhibitors. The antiepileptic drug sulthiame (STM) is effective especially in focal seizures, particularly in benign epilepsy of childhood with centrotemporal spikes, and widely used in pediatric epileptology. STM is a sulfonamide derivate and an inhibitor of mammalian carbonic anhydrase isoforms I-XIV. RESULTS: We describe two unrelated patients, an 8-year-old girl and an 11-year-old boy, with cryptogenic focal epilepsy, who suffered binocular (subject #1) or monocular (subject #2) visual loss in close temporal connection with starting antiepileptic pharmacotherapy with STM. In both subjects, visual loss was due to LHON. We used real-time respirometry in fibroblasts derived from LHON patients carrying the same mitochondrial mutations as our two subjects to investigate the effect of STM on oxidative phosphorylation. Oxygen consumption rate in fibroblasts from a healthy control was not impaired by STM compared with a vehicle control. In contrast, fibroblasts carrying the m.14484T>C or the m.3460G>A LHON mutation displayed a drastic reduction of the respiration rate when treated with STM compared to vehicle control. CONCLUSIONS: Our observations point to a causal relationship between STM treatment and onset or worsening of visual failure in two subjects with LHON rather than pure coincidence. We conclude that antiepileptic medication with STM may pose a risk for visual loss in LHON mutation carriers and should be avoided in these patients.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Niño , ADN Mitocondrial , Femenino , Humanos , Masculino , Mitocondrias , Mutación , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Atrofia Óptica Hereditaria de Leber/genética , Fumar , Tiazinas
10.
EMBO Rep ; 22(4): e51635, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33586863

RESUMEN

Mitochondria possess a small genome that codes for core subunits of the oxidative phosphorylation system and whose expression is essential for energy production. Information on the regulation and spatial organization of mitochondrial gene expression in the cellular context has been difficult to obtain. Here we devise an imaging approach to analyze mitochondrial translation within the context of single cells, by following the incorporation of clickable non-canonical amino acids. We apply this method to multiple cell types, including specialized cells such as cardiomyocytes and neurons, and monitor with spatial resolution mitochondrial translation in axons and dendrites. We also show that translation imaging allows to monitor mitochondrial protein expression in patient fibroblasts. Approaching mitochondrial translation with click chemistry opens new avenues to understand how mitochondrial biogenesis is integrated into the cellular context and can be used to assess mitochondrial gene expression in mitochondrial diseases.


Asunto(s)
Proteínas Mitocondriales , Biosíntesis de Proteínas , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Biogénesis de Organelos , Fosforilación Oxidativa
12.
Mutat Res Rev Mutat Res ; 786: 108334, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33339579

RESUMEN

Dilated cardiomyopathy is a frequent and extremely heterogeneous medical condition. Deficits in the oxidative phosphorylation system have been described in patients suffering from dilated cardiomyopathy. Hence, mutations in proteins related to this biochemical pathway could be etiological factors for some of these patients. Here, we review the clinical phenotypes of patients harboring pathological mutations in genes related to the oxidative phosphorylation system, either encoded in the mitochondrial or in the nuclear genome, presenting with dilated cardiomyopathy. In addition to the clinical heterogeneity of these patients, the large genetic heterogeneity has contributed to an improper allocation of pathogenicity for many candidate mutations. We suggest criteria to avoid incorrect assignment of pathogenicity to newly found mutations and discuss possible therapies targeting the oxidative phosphorylation function.


Asunto(s)
Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , ADN Mitocondrial/genética , Humanos , Mitocondrias/genética , Mitocondrias/patología , Mutación , Fosforilación Oxidativa , Fenotipo
13.
EMBO J ; 39(14): e104105, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32567732

RESUMEN

Mitochondrial function is critically dependent on the folding of the mitochondrial inner membrane into cristae; indeed, numerous human diseases are associated with aberrant crista morphologies. With the MICOS complex, OPA1 and the F1 Fo -ATP synthase, key players of cristae biogenesis have been identified, yet their interplay is poorly understood. Harnessing super-resolution light and 3D electron microscopy, we dissect the roles of these proteins in the formation of cristae in human mitochondria. We individually disrupted the genes of all seven MICOS subunits in human cells and re-expressed Mic10 or Mic60 in the respective knockout cell line. We demonstrate that assembly of the MICOS complex triggers remodeling of pre-existing unstructured cristae and de novo formation of crista junctions (CJs) on existing cristae. We show that the Mic60-subcomplex is sufficient for CJ formation, whereas the Mic10-subcomplex controls lamellar cristae biogenesis. OPA1 stabilizes tubular CJs and, along with the F1 Fo -ATP synthase, fine-tunes the positioning of the MICOS complex and CJs. We propose a new model of cristae formation, involving the coordinated remodeling of an unstructured crista precursor into multiple lamellar cristae.


Asunto(s)
Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Células HeLa , Humanos , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Complejos Multiproteicos/genética
14.
Cancers (Basel) ; 12(4)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283712

RESUMEN

Reprogramming of energy metabolism constitutes one of the hallmarks of cancer and is, therefore, an emerging therapeutic target. We describe here that the potassium channel Kv10.1, which is frequently overexpressed in primary and metastatic cancer, and has been proposed a therapeutic target, participates in metabolic adaptation of cancer cells through regulation of mitochondrial dynamics. We used biochemical and cell biological techniques, live cell imaging and high-resolution microscopy, among other approaches, to study the impact of Kv10.1 on the regulation of mitochondrial stability. Inhibition of Kv10.1 expression or function led to mitochondrial fragmentation, increase in reactive oxygen species and increased autophagy. Cells with endogenous overexpression of Kv10.1 were also more sensitive to mitochondrial metabolism inhibitors than cells with low expression, indicating that they are more dependent on mitochondrial function. Consistently, a combined therapy using functional monoclonal antibodies for Kv10.1 and mitochondrial metabolism inhibitors resulted in enhanced efficacy of the inhibitors. Our data reveal a new mechanism regulated by Kv10.1 in cancer and a novel strategy to overcome drug resistance in cancers with a high expression of Kv10.1.

15.
Curr Biol ; 30(6): 1119-1127.e5, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32142709

RESUMEN

In mitochondria, the carrier translocase (TIM22 complex) facilitates membrane insertion of multi-spanning proteins with internal targeting signals into the inner membrane [1-3]. Tom70, a subunit of TOM complex, represents the major receptor for these precursors [2, 4-6]. After transport across the outer membrane, the hydrophobic carriers engage with the small TIM protein complex composed of Tim9 and Tim10 for transport across the intermembrane space (IMS) toward the TIM22 complex [7-12]. Tim22 represents the pore-forming core unit of the complex [13, 14]. Only a small subset of TIM22 cargo molecules, containing four or six transmembrane spans, have been experimentally defined. Here, we used a tim22 temperature-conditional mutant to define the TIM22 substrate spectrum. Along with carrier-like cargo proteins, we identified subunits of the mitochondrial pyruvate carrier (MPC) as unconventional TIM22 cargos. MPC proteins represent substrates with atypical topology for this transport pathway. In agreement with this, a patient affected in TIM22 function displays reduced MPC levels. Our findings broaden the repertoire of carrier pathway substrates and challenge current concepts of TIM22-mediated transport processes.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Proteínas Mitocondriales/genética , Transportadores de Ácidos Monocarboxílicos/genética , Ácido Pirúvico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Transporte Biológico , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
J Mol Biol ; 432(7): 2067-2079, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32061935

RESUMEN

The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory chain, contains heme and copper centers for electron transfer. The conserved COX2 subunit contains the CuA site, a binuclear copper center. The copper chaperones SCO1, SCO2, and COA6, are required for CuA center formation. Loss of function of these chaperones and the concomitant cytochrome c oxidase deficiency cause severe human disorders. Here we analyzed the molecular function of COA6 and the consequences of COA6 deficiency for mitochondria. Our analyses show that loss of COA6 causes combined complex I and complex IV deficiency and impacts membrane potential-driven protein transport across the inner membrane. We demonstrate that COA6 acts as a thiol-reductase to reduce disulfide bridges of critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA biogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Cobre/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Compuestos de Sulfhidrilo/química , Proteínas Portadoras/genética , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Células HEK293 , Humanos , Metalochaperonas , Mitocondrias/genética , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Mutación , Transporte de Proteínas
17.
EMBO Rep ; 21(1): e48833, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31721420

RESUMEN

The mitochondrial genome encodes for thirteen core subunits of the oxidative phosphorylation system. These proteins assemble with imported proteins in a modular manner into stoichiometric enzyme complexes. Assembly factors assist in these biogenesis processes by providing co-factors or stabilizing transient assembly stages. However, how expression of the mitochondrial-encoded subunits is regulated to match the availability of nuclear-encoded subunits is still unresolved. Here, we address the function of MITRAC15/COA1, a protein that participates in complex I biogenesis and complex IV biogenesis. Our analyses of a MITRAC15 knockout mutant reveal that MITRAC15 is required for translation of the mitochondrial-encoded complex I subunit ND2. We find that MITRAC15 is a constituent of a ribosome-nascent chain complex during ND2 translation. Chemical crosslinking analyses demonstrate that binding of the ND2-specific assembly factor ACAD9 to the ND2 polypeptide occurs at the C-terminus and thus downstream of MITRAC15. Our analyses demonstrate that expression of the founder subunit ND2 of complex I undergoes regulation. Moreover, a ribosome-nascent chain complex with MITRAC15 is at the heart of this process.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Ribosomas/genética , Ribosomas/metabolismo
18.
Elife ; 82019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31793879

RESUMEN

Lysosomal acidification is a key feature of healthy cells. Inability to maintain lysosomal acidic pH is associated with aging and neurodegenerative diseases. However, the mechanisms elicited by impaired lysosomal acidification remain poorly understood. We show here that inhibition of lysosomal acidification triggers cellular iron deficiency, which results in impaired mitochondrial function and non-apoptotic cell death. These effects are recovered by supplying iron via a lysosome-independent pathway. Notably, iron deficiency is sufficient to trigger inflammatory signaling in cultured primary neurons. Using a mouse model of impaired lysosomal acidification, we observed a robust iron deficiency response in the brain, verified by in vivo magnetic resonance imaging. Furthermore, the brains of these mice present a pervasive inflammatory signature associated with instability of mitochondrial DNA (mtDNA), both corrected by supplementation of the mice diet with iron. Our results highlight a novel mechanism linking impaired lysosomal acidification, mitochondrial malfunction and inflammation in vivo.


Asunto(s)
Ácidos/metabolismo , Inflamación/metabolismo , Inflamación/patología , Deficiencias de Hierro , Lisosomas/metabolismo , Animales , Apoptosis , Encéfalo/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Proliferación Celular , ADN Mitocondrial/genética , Modelos Animales de Enfermedad , Transporte de Electrón , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis , Concentración de Iones de Hidrógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunidad Innata , Inflamación/genética , Hierro/farmacología , Lisosomas/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Biogénesis de Organelos , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/metabolismo , alfa-Glucosidasas/deficiencia , alfa-Glucosidasas/metabolismo
19.
EMBO J ; 38(15): e100871, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31304984

RESUMEN

Reactive oxygen species (ROS) are emerging as important regulators of cancer growth and metastatic spread. However, how cells integrate redox signals to affect cancer progression is not fully understood. Mitochondria are cellular redox hubs, which are highly regulated by interactions with neighboring organelles. Here, we investigated how ROS at the endoplasmic reticulum (ER)-mitochondria interface are generated and translated to affect melanoma outcome. We show that TMX1 and TMX3 oxidoreductases, which promote ER-mitochondria communication, are upregulated in melanoma cells and patient samples. TMX knockdown altered mitochondrial organization, enhanced bioenergetics, and elevated mitochondrial- and NOX4-derived ROS. The TMX-knockdown-induced oxidative stress suppressed melanoma proliferation, migration, and xenograft tumor growth by inhibiting NFAT1. Furthermore, we identified NFAT1-positive and NFAT1-negative melanoma subgroups, wherein NFAT1 expression correlates with melanoma stage and metastatic potential. Integrative bioinformatics revealed that genes coding for mitochondrial- and redox-related proteins are under NFAT1 control and indicated that TMX1, TMX3, and NFAT1 are associated with poor disease outcome. Our study unravels a novel redox-controlled ER-mitochondria-NFAT1 signaling loop that regulates melanoma pathobiology and provides biomarkers indicative of aggressive disease.


Asunto(s)
Melanoma/patología , Proteínas de la Membrana/metabolismo , Factores de Transcripción NFATC/metabolismo , Oxidación-Reducción , Proteína Disulfuro Isomerasas/metabolismo , Tiorredoxinas/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Retículo Endoplásmico/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Melanoma/metabolismo , Proteínas de la Membrana/genética , Ratones , Mitocondrias/metabolismo , NADPH Oxidasa 4/metabolismo , Trasplante de Neoplasias , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Análisis de Supervivencia , Tiorredoxinas/genética , Regulación hacia Arriba
20.
Hum Mol Genet ; 27(23): 4135-4144, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452684

RESUMEN

Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange.


Asunto(s)
Proteínas Portadoras/genética , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Miopatías Mitocondriales/genética , Niño , ADN Mitocondrial/genética , Femenino , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Ácido Láctico/líquido cefalorraquídeo , Proteínas de Transporte de Membrana/genética , Mitocondrias/patología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Miopatías Mitocondriales/líquido cefalorraquídeo , Miopatías Mitocondriales/patología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...