Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 5904, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737269

RESUMEN

Glial cells have been proposed as a source of neural progenitors, but the mechanisms underpinning the neurogenic potential of adult glia are not known. Using single cell transcriptomic profiling, we show that enteric glial cells represent a cell state attained by autonomic neural crest cells as they transition along a linear differentiation trajectory that allows them to retain neurogenic potential while acquiring mature glial functions. Key neurogenic loci in early enteric nervous system progenitors remain in open chromatin configuration in mature enteric glia, thus facilitating neuronal differentiation under appropriate conditions. Molecular profiling and gene targeting of enteric glial cells in a cell culture model of enteric neurogenesis and a gut injury model demonstrate that neuronal differentiation of glia is driven by transcriptional programs employed in vivo by early progenitors. Our work provides mechanistic insight into the regulatory landscape underpinning the development of intestinal neural circuits and generates a platform for advancing glial cells as therapeutic agents for the treatment of neural deficits.


Asunto(s)
Neurogénesis , Neuroglía , Adulto , Humanos , Neurogénesis/genética , Diferenciación Celular , Sistema Nervioso Autónomo , Técnicas de Cultivo de Célula
2.
Immunity ; 56(8): 1712-1726, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37557080

RESUMEN

The enteric nervous system is largely autonomous, and the central nervous system is compartmentalized behind the blood-brain barrier. Yet the intestinal microbiota shapes gut function, local and systemic immune responses, and central nervous system functions including cognition and mood. In this review, we address how the gut microbiota can profoundly influence neural and immune networks. Although many of the interactions between these three systems originate in the intestinal mucosa, intestinal function and immunity are modulated by neural pathways that connect the gut and brain. Furthermore, a subset of microbe-derived penetrant molecules enters the brain and regulates central nervous system function. Understanding how these seemingly isolated entities communicate has the potential to open up new avenues for therapies and interventions.


Asunto(s)
Sistema Nervioso Entérico , Microbioma Gastrointestinal , Microbiota , Sistema Nervioso Central , Encéfalo
3.
Nat Commun ; 13(1): 5217, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064547

RESUMEN

Cortical interneurons originating in the embryonic medial ganglionic eminence (MGE) diverge into a range of different subtypes found in the adult mouse cerebral cortex. The mechanisms underlying this divergence and the timing when subtype identity is set up remain unclear. We identify the highly conserved transcriptional co-factor MTG8 as being pivotal in the development of a large subset of MGE cortical interneurons that co-expresses Somatostatin (SST) and Neuropeptide Y (NPY). MTG8 interacts with the pan-MGE transcription factor LHX6 and together the two factors are sufficient to promote expression of critical cortical interneuron subtype identity genes. The SST-NPY cortical interneuron fate is initiated early, well before interneurons migrate into the cortex, demonstrating an early onset specification program. Our findings suggest that transcriptional co-factors and modifiers of generic lineage specification programs may hold the key to the emergence of cortical interneuron heterogeneity from the embryonic telencephalic germinal zones.


Asunto(s)
Corteza Cerebral , Interneuronas , Proteínas con Homeodominio LIM , Eminencia Media , Factores de Transcripción , Animales , Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/metabolismo , Interneuronas/fisiología , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Eminencia Media/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuropéptido Y/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Somatostatina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Front Mol Neurosci ; 15: 832317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694443

RESUMEN

The majority of the enteric nervous system is formed by vagal neural crest cells which enter the foregut and migrate rostrocaudally to colonise the entire length of the gastrointestinal tract. Absence of enteric ganglia from the distal colon are the hallmark of Hirschsprung disease, a congenital disorder characterised by severe intestinal dysmotility. Mutations in the receptor tyrosine kinase RET have been identified in approximately 50% of familial cases of Hirschsprung disease but the cellular processes misregulated in this condition remain unclear. By lineage tracing neural crest cells in mice homozygous for a knock-in allele of Ret (Ret51/51), we demonstrate that normal activity of this receptor is required in vivo for the migration of enteric nervous system progenitors throughout the gut. In mutant mice, progenitors of enteric neurons fail to colonise the distal colon, indicating that failure of colonisation of the distal intestine is a major contributing factor for the pathogenesis of Hirschsprung disease. Enteric nervous system progenitors in the ganglionic proximal guts of mutant mice are also characterised by reduced proliferation and differentiation. These findings suggest that the functional abnormalities in Hirschsprung disease result from a combination of colonic aganglionosis and deficits in neuronal circuitry of more proximal gut segments. The reduced neurogenesis in the gut of Ret51/51 mutants was reproduced in the multilineage enteric nervous system progenitors isolated from these animals. Correction of the molecular defects of such progenitors fully restored their neurogenic potential in culture. These observations enhance our understanding of the pathogenesis of Hirschsprung disease and highlight potential approaches for its treatment.

5.
Nat Protoc ; 17(8): 1789-1817, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676375

RESUMEN

The enteric nervous system (ENS) is an extensive network of enteric neurons and glial cells that is intrinsic to the gut wall and regulates almost all aspects of intestinal physiology. While considerable advancement has been made in understanding the genetic programs regulating ENS development, there is limited understanding of the molecular pathways that control ENS function in adult stages. One of the limitations in advancing the molecular characterization of the adult ENS relates to technical difficulties in purifying healthy neurons and glia from adult intestinal tissues. To overcome this, we developed novel methods for performing transcriptomic analysis of enteric neurons and glia, which are based on the isolation of fluorescently labeled nuclei. Here we provide a step-by-step protocol for the labeling of adult mouse enteric neuronal nuclei using adeno-associated-virus-mediated gene transfer, isolation of the labeled nuclei by fluorimetric analysis, RNA purification and nuclear RNA sequencing. This protocol has also been adapted for the isolation of enteric neuron and glia nuclei from myenteric plexus preparations from adult zebrafish intestine. Finally, we describe a method for visualization and quantification of RNA in myenteric ganglia: Spatial Integration of Granular Nuclear Signals (SIGNS). By following this protocol, it takes ~3 d to generate RNA and create cDNA libraries for nuclear RNA sequencing and 4 d to carry out high-resolution RNA expression analysis on ENS tissues.


Asunto(s)
Sistema Nervioso Entérico , Pez Cebra , Animales , Linaje de la Célula , Sistema Nervioso Entérico/metabolismo , Ratones , Neuroglía/metabolismo , ARN/metabolismo , Pez Cebra/genética
6.
Curr Opin Immunol ; 77: 102183, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35533467

RESUMEN

The nervous system and immune system are important interfaces of the gastrointestinal tract that sense, integrate and respond to environmental stimuli and challenges. Enteric glial cells (EGCs), the non-neuronal cells of the enteric nervous system, were long considered mere bystanders only providing support for their workhorse neuronal neighbours. However, work by many groups has demonstrated that EGCs are important nodes in the intestinal tissue circuitry that regulate gastrointestinal barrier function, immunity, host defence and tissue repair. More recent studies have also begun to uncover the cellular interactions and molecular mechanisms that underpin the important functions of EGCs in intestinal physiology and pathophysiology. Here, we review recent literature investigating the roles of EGCs in intestinal immunity and tissue homeostasis.


Asunto(s)
Sistema Nervioso Entérico , Neuroglía , Comunicación Celular , Sistema Nervioso Entérico/fisiología , Humanos , Intestinos , Neuronas/fisiología
7.
Cell Stem Cell ; 29(1): 3-4, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995494

RESUMEN

Intestinal stem cells continuously self-renew and differentiate into a variety of specialized epithelial cells that maintain gut health. New research in this issue of Cell Stem Cell (Baghdadi et al., 2022) shows that enteric glial cells regulate the intestinal stem cell niche during regeneration and disease through the production of WNT ligands.


Asunto(s)
Neuroglía , Nicho de Células Madre , Células Epiteliales , Células Madre
8.
Nature ; 599(7883): 125-130, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34671159

RESUMEN

Tissue maintenance and repair depend on the integrated activity of multiple cell types1. Whereas the contributions of epithelial2,3, immune4,5 and stromal cells6,7 in intestinal tissue integrity are well understood, the role of intrinsic neuroglia networks remains largely unknown. Here we uncover important roles of enteric glial cells (EGCs) in intestinal homeostasis, immunity and tissue repair. We demonstrate that infection of mice with Heligmosomoides polygyrus leads to enteric gliosis and the upregulation of an interferon gamma (IFNγ) gene signature. IFNγ-dependent gene modules were also induced in EGCs from patients with inflammatory bowel disease8. Single-cell transcriptomics analysis of the tunica muscularis showed that glia-specific abrogation of IFNγ signalling leads to tissue-wide activation of pro-inflammatory transcriptional programs. Furthermore, disruption of the IFNγ-EGC signalling axis enhanced the inflammatory and granulomatous response of the tunica muscularis to helminths. Mechanistically, we show that the upregulation of Cxcl10 is an early immediate response of EGCs to IFNγ signalling and provide evidence that this chemokine and the downstream amplification of IFNγ signalling in the tunica muscularis are required for a measured inflammatory response to helminths and resolution of the granulomatous pathology. Our study demonstrates that IFNγ signalling in enteric glia is central to intestinal homeostasis and reveals critical roles of the IFNγ-EGC-CXCL10 axis in immune response and tissue repair after infectious challenge.


Asunto(s)
Homeostasis , Intestinos/inmunología , Intestinos/fisiología , Neuroglía/inmunología , Neuroglía/fisiología , Regeneración , Adventicia/inmunología , Adventicia/parasitología , Animales , Quimiocina CXCL10/inmunología , Duodeno/inmunología , Duodeno/parasitología , Duodeno/patología , Duodeno/fisiología , Femenino , Gliosis , Homeostasis/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Interferón gamma/inmunología , Intestinos/parasitología , Intestinos/patología , Masculino , Ratones , Nematospiroides dubius/inmunología , Nematospiroides dubius/patogenicidad , Transducción de Señal/inmunología , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología , Infecciones por Strongylida/patología
9.
Elife ; 92020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32851974

RESUMEN

The presence and identity of neural progenitors in the enteric nervous system (ENS) of vertebrates is a matter of intense debate. Here, we demonstrate that the non-neuronal ENS cell compartment of teleosts shares molecular and morphological characteristics with mammalian enteric glia but cannot be identified by the expression of canonical glial markers. However, unlike their mammalian counterparts, which are generally quiescent and do not undergo neuronal differentiation during homeostasis, we show that a relatively high proportion of zebrafish enteric glia proliferate under physiological conditions giving rise to progeny that differentiate into enteric neurons. We also provide evidence that, similar to brain neural stem cells, the activation and neuronal differentiation of enteric glia are regulated by Notch signalling. Our experiments reveal remarkable similarities between enteric glia and brain neural stem cells in teleosts and open new possibilities for use of mammalian enteric glia as a potential source of neurons to restore the activity of intestinal neural circuits compromised by injury or disease.


Asunto(s)
Sistema Nervioso Entérico/citología , Neuroglía/citología , Animales , Encéfalo/citología , Ratones , Células-Madre Neurales/citología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Pez Cebra
10.
Proc Natl Acad Sci U S A ; 117(33): 19624-19626, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32759220
11.
Curr Opin Pharmacol ; 50: 100-106, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32240931

RESUMEN

Normal activity and functional integration of the enteric nervous system (ENS) into the gut tissue circuitry and the luminal ecosystem are essential for digestive physiology and human health. A range of debilitating gastrointestinal disorders are linked to ENS dysfunction, caused either by developmental deficits, such as congenital megacolon (Hirschsprung's disease-HSCR) or a host of acquired intestinal neuropathies with unclear molecular or cellular pathogenesis. Recent advances in cell engineering underscore the potential use of cell replacement technologies for the treatment of ENS disorders. This review will highlight strategies used to derive ENS lineages from various tissue sources intended for cell therapy and disease modelling. We will also describe how a developmental atlas of the mammalian ENS re-constructed from single cell genomics data is an essential reference for shaping future therapeutic approaches in regenerative enteric neuroscience and neuro-gastroenterology.


Asunto(s)
Sistema Nervioso Entérico , Neurogénesis , Animales , Reprogramación Celular , Humanos , Células Madre Pluripotentes Inducidas , Modelos Biológicos , Cresta Neural
12.
Nature ; 578(7794): 284-289, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025031

RESUMEN

Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders1. Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility2-5, but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Intestinos/fisiología , Neuronas/fisiología , Peristaltismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Femenino , Vida Libre de Gérmenes , Intestinos/inervación , Ligandos , Masculino , Ratones , Vías Nerviosas , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Transcriptoma/genética
13.
J Vis Exp ; (150)2019 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-31498303

RESUMEN

Neuronal development is regulated by a complex combination of environmental and genetic factors. Assessing the relative contribution of each component is a complicated task, which is particularly difficult in regards to the development of γ-aminobutyric acid (GABA)ergic cortical interneurons (CIs). CIs are the main inhibitory neurons in the cerebral cortex, and they play key roles in neuronal networks, by regulating both the activity of individual pyramidal neurons, as well as the oscillatory behavior of neuronal ensembles. They are generated in transient embryonic structures (medial and caudal ganglionic eminences - MGE and CGE) that are very difficult to efficiently target using in utero electroporation approaches. Interneuron progenitors migrate long distances during normal embryonic development, before they integrate in the cortical circuit. This remarkable ability to disperse and integrate into a developing network can be hijacked by transplanting embryonic interneuron precursors into early post-natal host cortices. Here, we present a protocol that allows genetic modification of embryonic interneuron progenitors using focal ex vivo electroporation. These engineered interneuron precursors are then transplanted into early post-natal host cortices, where they will mature into easily identifiable CIs. This protocol allows the use of multiple genetically encoded tools, or the ability to regulate the expression of specific genes in interneuron progenitors, in order to investigate the impact of either genetic or environmental variables on the maturation and integration of CIs.


Asunto(s)
Corteza Cerebral/fisiología , Interneuronas/trasplante , Células-Madre Neurales/trasplante , Animales , Animales Recién Nacidos , Clozapina/análogos & derivados , Clozapina/farmacología , Electroporación , Femenino , Interneuronas/efectos de los fármacos , Ratones , Células-Madre Neurales/efectos de los fármacos
14.
Glia ; 67(6): 1167-1178, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30730592

RESUMEN

Coordination of gastrointestinal function relies on joint efforts of enteric neurons and glia, whose crosstalk is vital for the integration of their activity. To investigate the signaling mechanisms and to delineate the spatial aspects of enteric neuron-to-glia communication within enteric ganglia we developed a method to stimulate single enteric neurons while monitoring the activity of neighboring enteric glial cells. We combined cytosolic calcium uncaging of individual enteric neurons with calcium imaging of enteric glial cells expressing a genetically encoded calcium indicator and demonstrate that enteric neurons signal to enteric glial cells through pannexins using paracrine purinergic pathways. Sparse labeling of enteric neurons and high-resolution analysis of the structural relation between neuronal cell bodies, varicose release sites and enteric glia uncovered that this form of neuron-to-glia communication is contained between the cell body of an enteric neuron and its surrounding enteric glial cells. Our results reveal the spatial and functional foundation of neuro-glia units as an operational cellular assembly in the enteric nervous system.


Asunto(s)
Comunicación Celular/fisiología , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Animales , Células Cultivadas , Sistema Nervioso Entérico/química , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/química , Neuronas/química
15.
J Exp Neurosci ; 12: 1179069518784277, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013387

RESUMEN

The mammalian cortex consists of two main neuronal types: the principal excitatory pyramidal neurons (PNs) and the inhibitory interneurons (INs). The interplay between these two neuronal populations - which drive excitation and inhibition (E/I balance), respectively - is crucial for controlling the overall activity in the brain. A number of neurological and psychiatric disorders have been associated with changes in E/I balance. It is not surprising, therefore, that neural networks employ several different mechanisms to maintain their firing rates at a stable level, collectively referred as homeostatic forms of plasticity. Here, we share our views on how the size of IN populations may provide an early homeostatic checkpoint for controlling brain activity. In a recent paper published in Cell Reports, we demonstrate that the extent of IN apoptosis during a critical early postnatal period is plastic, cell type specific, and can be reduced in a cell-autonomous manner by acute increases in neuronal activity. We propose that a critical interplay between the physiological state of the network and its cellular units fine-tunes the size of IN populations with the aim of stabilizing network activity.

16.
Cell Rep ; 22(7): 1710-1721, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29444425

RESUMEN

Cortical networks are composed of excitatory projection neurons and inhibitory interneurons. Finding the right balance between the two is important for controlling overall cortical excitation and network dynamics. However, it is unclear how the correct number of cortical interneurons (CIs) is established in the mammalian forebrain. CIs are generated in excess from basal forebrain progenitors, and their final numbers are adjusted via an intrinsically determined program of apoptosis that takes place during an early postnatal window. Here, we provide evidence that the extent of CI apoptosis during this critical period is plastic and cell-type specific and can be reduced in a cell-autonomous manner by acute increases in neuronal activity. We propose that the physiological state of the emerging neural network controls the activity levels of local CIs to modulate their numbers in a homeostatic manner.


Asunto(s)
Apoptosis , Corteza Cerebral/citología , Interneuronas/citología , Inhibición Neural , Animales , Recuento de Células , Linaje de la Célula , Supervivencia Celular , Microambiente Celular , Proteínas con Homeodominio LIM/deficiencia , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Eminencia Media/citología , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética , Regulación hacia Arriba/genética
17.
Gastroenterology ; 154(3): 624-636, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29031500

RESUMEN

BACKGROUND & AIMS: The enteric nervous system (ENS) regulates gastrointestinal function via different subtypes of neurons, organized into fine-tuned neural circuits. It is not clear how cell diversity is created within the embryonic ENS; information required for development of cell-based therapies and models of enteric neuropathies. We aimed to identify proteins that regulate ENS differentiation and network formation. METHODS: We generated and compared RNA expression profiles of the entire ENS, ENS progenitor cells, and non-ENS gut cells of mice, collected at embryonic days 11.5 and 15.5, when different subtypes of neurons are formed. Gastrointestinal tissues from R26ReYFP reporter mice crossed to Sox10-CreERT2 or Wnt1-Cre mice were dissected and the 6 populations of cells were isolated by flow cytometry. We used histochemistry to map differentially expressed proteins in mouse and human gut tissues at different stages of development, in different regions. We examined enteric neuronal diversity and gastric function in Wnt1-Cre x Sox6fl/fl mice, which do not express the Sox6 gene in the ENS. RESULTS: We identified 147 transcription and signaling factors that varied in spatial and temporal expression during development of the mouse ENS. Of the factors also analyzed in human ENS, most were conserved. We uncovered 16 signaling pathways (such as fibroblast growth factor and Eph/ephrin pathways). Transcription factors were grouped according to their specific expression in enteric progenitor cells (such as MEF2C), enteric neurons (such as SOX4), or neuron subpopulations (such as SATB1 and SOX6). Lack of SOX6 in the ENS reduced the numbers of gastric dopamine neurons and delayed gastric emptying. CONCLUSIONS: Using transcriptome and histochemical analyses of the developing mouse and human ENS, we mapped expression patterns of transcription and signaling factors. Further studies of these candidate determinants might elucidate the mechanisms by which enteric stem cells differentiate into neuronal subtypes and form distinct connectivity patterns during ENS development. We found expression of SOX6 to be required for development of gastric dopamine neurons.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Sistema Nervioso Entérico/metabolismo , Transducción de Señal , Estómago/inervación , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Comunicación Autocrina , Sistema Nervioso Entérico/embriología , Vaciamiento Gástrico , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genotipo , Edad Gestacional , Humanos , Ratones Noqueados , Comunicación Paracrina , Fenotipo , Factores de Transcripción SOXD/genética , Factores de Transcripción SOXD/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Especificidad de la Especie , Factores de Transcripción/genética
19.
Nature ; 548(7669): 582-587, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28847002

RESUMEN

Multiple populations of wake-promoting neurons have been characterized in mammals, but few sleep-promoting neurons have been identified. Wake-promoting cell types include hypocretin and GABA (γ-aminobutyric-acid)-releasing neurons of the lateral hypothalamus, which promote the transition to wakefulness from non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Here we show that a subset of GABAergic neurons in the mouse ventral zona incerta, which express the LIM homeodomain factor Lhx6 and are activated by sleep pressure, both directly inhibit wake-active hypocretin and GABAergic cells in the lateral hypothalamus and receive inputs from multiple sleep-wake-regulating neurons. Conditional deletion of Lhx6 from the developing diencephalon leads to decreases in both NREM and REM sleep. Furthermore, selective activation and inhibition of Lhx6-positive neurons in the ventral zona incerta bidirectionally regulate sleep time in adult mice, in part through hypocretin-dependent mechanisms. These studies identify a GABAergic subpopulation of neurons in the ventral zona incerta that promote sleep.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sueño/fisiología , Factores de Transcripción/metabolismo , Zona Incerta/citología , Ácido gamma-Aminobutírico/metabolismo , Animales , Linaje de la Célula , Neuronas GABAérgicas/efectos de los fármacos , Eliminación de Gen , Hipocampo/citología , Hipocampo/fisiología , Proteínas con Homeodominio LIM/deficiencia , Proteínas con Homeodominio LIM/efectos de los fármacos , Proteínas con Homeodominio LIM/genética , Masculino , Ratones , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Orexinas/metabolismo , Terminales Presinápticos/metabolismo , Sueño/efectos de los fármacos , Sueño/genética , Sueño REM/efectos de los fármacos , Sueño REM/genética , Sueño REM/fisiología , Factores de Tiempo , Factores de Transcripción/deficiencia , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética , Vigilia/efectos de los fármacos , Vigilia/genética , Vigilia/fisiología , Zona Incerta/efectos de los fármacos , Zona Incerta/fisiología
20.
Science ; 356(6339): 722-726, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28522527

RESUMEN

The enteric nervous system (ENS) is essential for digestive function and gut homeostasis. Here we show that the amorphous neuroglia networks of the mouse ENS are composed of overlapping clonal units founded by postmigratory neural crest-derived progenitors. The spatial configuration of ENS clones depends on proliferation-driven local interactions of ENS progenitors with lineally unrelated neuroectodermal cells, the ordered colonization of the serosa-mucosa axis by clonal descendants, and gut expansion. Single-cell transcriptomics and mutagenesis analysis delineated dynamic molecular states of ENS progenitors and identified RET as a regulator of neurogenic commitment. Clonally related enteric neurons exhibit synchronous activity in response to network stimulation. Thus, lineage relationships underpin the organization of the peripheral nervous system.


Asunto(s)
Linaje de la Célula , Sistema Nervioso Entérico/citología , Animales , Linaje de la Célula/genética , Proliferación Celular , Células Clonales/citología , Sistema Nervioso Entérico/metabolismo , Mucosa Intestinal/citología , Ratones , Mosaicismo , Mutagénesis , Cresta Neural/citología , Neurogénesis , Neuroglía/fisiología , Neuronas/citología , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual , Células Madre/citología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...