Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Dis Model Mech ; 17(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38516812

RESUMEN

Interconnected mechanisms of ischemia and reperfusion (IR) has increased the interest in IR in vitro experiments using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We developed a whole-cell computational model of hiPSC-CMs including the electromechanics, a metabolite-sensitive sarcoplasmic reticulum Ca2+-ATPase (SERCA) and an oxygen dynamics formulation to investigate IR mechanisms. Moreover, we simulated the effect and action mechanism of levosimendan, which recently showed promising anti-arrhythmic effects in hiPSC-CMs in hypoxia. The model was validated using hiPSC-CM and in vitro animal data. The role of SERCA in causing relaxation dysfunction in IR was anticipated to be comparable to its function in sepsis-induced heart failure. Drug simulations showed that levosimendan counteracts the relaxation dysfunction by utilizing a particular Ca2+-sensitizing mechanism involving Ca2+-bound troponin C and Ca2+ flux to the myofilament, rather than inhibiting SERCA phosphorylation. The model demonstrates extensive characterization and promise for drug development, making it suitable for evaluating IR therapy strategies based on the changing levels of cardiac metabolites, oxygen and molecular pathways.


Asunto(s)
Calcio , Simulación por Computador , Células Madre Pluripotentes Inducidas , Contracción Miocárdica , Miocitos Cardíacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Simendán , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Simendán/farmacología , Simendán/uso terapéutico , Contracción Miocárdica/efectos de los fármacos , Calcio/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Oxígeno/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Animales , Modelos Biológicos
2.
J Physiol ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37641426

RESUMEN

Mechano-electric regulations (MER) play an important role in the maintenance of cardiac performance. Mechano-calcium and mechano-electric feedback (MCF and MEF) pathways adjust the cardiomyocyte contractile force according to mechanical perturbations and affects electro-mechanical coupling. MER integrates all these regulations in one unit resulting in a complex phenomenon. Computational modelling is a useful tool to accelerate the mechanistic understanding of complex experimental phenomena. We have developed a novel model that integrates the MER loop for human atrial cardiomyocytes with proper consideration of feedforward and feedback pathways. The model couples a modified version of the action potential (AP) Koivumäki model with the contraction model by Quarteroni group. The model simulates iso-sarcometric and isometric twitches and the feedback effects on AP and Ca2+ -handling. The model showed a biphasic response of Ca2+ transient (CaT) peak to increasing pacing rates and highlights the possible mechanisms involved. The model has shown a shift of the threshold for AP and CaT alternans from 4.6 to 4 Hz under post-operative atrial fibrillation, induced by depressed SERCA activity. The alternans incidence was dependent on a chain of mechanisms including RyRs availability time, MCF coupling, CaMKII phosphorylation, and the stretch levels. As a result, the model predicted a 10% slowdown of conduction velocity for a 20% stretch, suggesting a role of stretch in creation of substrate formation for atrial fibrillation. Overall, we conclude that the developed model provides a physiological CaT followed by a physiological twitch. This model can open pathways for the future studies of human atrial electromechanics. KEY POINTS: With the availability of human atrial cellular data, interest in atrial-specific model integration has been enhanced. We have developed a detailed mathematical model of human atrial cardiomyocytes including the mechano-electric regulatory loop. The model has gone through calibration and evaluation phases against a wide collection of available human in-vitro data. The usefulness of the model for analysing clinical problems has been preliminaryly tested by simulating the increased incidence of Ca2+ transient and action potential alternans at high rates in post-operative atrial fibrillation condition. The model determines the possible role of mechano-electric feedback in alternans incidence, which can increase vulnerability to atrial arrhythmias by varying stretch levels. We found that our physiologically accurate description of Ca2+ handling can reproduce many experimental phenomena and can help to gain insights into the underlying pathophysiological mechanisms.

3.
Front Physiol ; 13: 1010786, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388127

RESUMEN

Introduction: Mavacamten (MAVA), Blebbistatin (BLEB), and Omecamtiv mecarbil (OM) are promising drugs directly targeting sarcomere dynamics, with demonstrated efficacy against hypertrophic cardiomyopathy (HCM) in (pre)clinical trials. However, the molecular mechanism affecting cardiac contractility regulation, and the diseased cell mechano-energetics are not fully understood yet. Methods: We present a new metabolite-sensitive computational model of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) electromechanics to investigate the pathology of R403Q HCM mutation and the effect of MAVA, BLEB, and OM on the cell mechano-energetics. Results: We offer a mechano-energetic HCM calibration of the model, capturing the prolonged contractile relaxation due to R403Q mutation (∼33%), without assuming any further modifications such as an additional Ca2+ flux to the thin filaments. The HCM model variant correctly predicts the negligible alteration in ATPase activity in R403Q HCM condition compared to normal hiPSC-CMs. The simulated inotropic effects of MAVA, OM, and BLEB, along with the ATPase activities in the control and HCM model variant agree with in vitro results from different labs. The proposed model recapitulates the tension-Ca2+ relationship and action potential duration change due to 1 µM OM and 5 µM BLEB, consistently with in vitro data. Finally, our model replicates the experimental dose-dependent effect of OM and BLEB on the normalized isometric tension. Conclusion: This work is a step toward deep-phenotyping the mutation-specific HCM pathophysiology, manifesting as altered interfilament kinetics. Accordingly, the modeling efforts lend original insights into the MAVA, BLEB, and OM contributions to a new interfilament balance resulting in a cardioprotective effect.

4.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36015898

RESUMEN

CNNs and other deep learners are now state-of-the-art in medical imaging research. However, the small sample size of many medical data sets dampens performance and results in overfitting. In some medical areas, it is simply too labor-intensive and expensive to amass images numbering in the hundreds of thousands. Building Deep CNN ensembles of pre-trained CNNs is one powerful method for overcoming this problem. Ensembles combine the outputs of multiple classifiers to improve performance. This method relies on the introduction of diversity, which can be introduced on many levels in the classification workflow. A recent ensembling method that has shown promise is to vary the activation functions in a set of CNNs or within different layers of a single CNN. This study aims to examine the performance of both methods using a large set of twenty activations functions, six of which are presented here for the first time: 2D Mexican ReLU, TanELU, MeLU + GaLU, Symmetric MeLU, Symmetric GaLU, and Flexible MeLU. The proposed method was tested on fifteen medical data sets representing various classification tasks. The best performing ensemble combined two well-known CNNs (VGG16 and ResNet50) whose standard ReLU activation layers were randomly replaced with another. Results demonstrate the superiority in performance of this approach.


Asunto(s)
Diagnóstico por Imagen , Redes Neurales de la Computación
5.
Front Physiol ; 13: 906146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721558

RESUMEN

Contractility has become one of the main readouts in computational and experimental studies on cardiomyocytes. Following this trend, we propose a novel mathematical model of human ventricular cardiomyocytes electromechanics, BPSLand, by coupling a recent human contractile element to the BPS2020 model of electrophysiology. BPSLand is the result of a hybrid optimization process and it reproduces all the electrophysiology experimental indices captured by its predecessor BPS2020, simultaneously enabling the simulation of realistic human active tension and its potential abnormalities. The transmural heterogeneity in both electrophysiology and contractility departments was simulated consistent with previous computational and in vitro studies. Furthermore, our model could capture delayed afterdepolarizations (DADs), early afterdepolarizations (EADs), and contraction abnormalities in terms of aftercontractions triggered by either drug action or special pacing modes. Finally, we further validated the mechanical results of the model against previous experimental and in silico studies, e.g., the contractility dependence on pacing rate. Adding a new level of applicability to the normative models of human cardiomyocytes, BPSLand represents a robust, fully-human in silico model with promising capabilities for translational cardiology.

6.
J Imaging ; 7(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34940721

RESUMEN

Convolutional neural networks (CNNs) have gained prominence in the research literature on image classification over the last decade. One shortcoming of CNNs, however, is their lack of generalizability and tendency to overfit when presented with small training sets. Augmentation directly confronts this problem by generating new data points providing additional information. In this paper, we investigate the performance of more than ten different sets of data augmentation methods, with two novel approaches proposed here: one based on the discrete wavelet transform and the other on the constant-Q Gabor transform. Pretrained ResNet50 networks are finetuned on each augmentation method. Combinations of these networks are evaluated and compared across four benchmark data sets of images representing diverse problems and collected by instruments that capture information at different scales: a virus data set, a bark data set, a portrait dataset, and a LIGO glitches data set. Experiments demonstrate the superiority of this approach. The best ensemble proposed in this work achieves state-of-the-art (or comparable) performance across all four data sets. This result shows that varying data augmentation is a feasible way for building an ensemble of classifiers for image classification.

7.
Physiol Rep ; 9(22): e15124, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34825519

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming instrumental in cardiac research, human-based cell level cardiotoxicity tests, and developing patient-specific care. As one of the principal functional readouts is contractility, we propose a novel electromechanical hiPSC-CM computational model named the hiPSC-CM-CE. This model comprises a reparametrized version of contractile element (CE) by Rice et al., 2008, with a new passive force formulation, integrated into a hiPSC-CM electrophysiology formalism by Paci et al. in 2020. Our simulated results were validated against in vitro data reported for hiPSC-CMs at matching conditions from different labs. Specifically, key action potential (AP) and calcium transient (CaT) biomarkers simulated by the hiPSC-CM-CE model were within the experimental ranges. On the mechanical side, simulated cell shortening, contraction-relaxation kinetic indices (RT50 and RT25 ), and the amplitude of tension fell within the experimental intervals. Markedly, as an inter-scale analysis, correct classification of the inotropic effects due to non-cardiomyocytes in hiPSC-CM tissues was predicted on account of the passive force expression introduced to the CE. Finally, the physiological inotropic effects caused by Verapamil and Bay-K 8644 and the aftercontractions due to the early afterdepolarizations (EADs) were simulated and validated against experimental data. In the future, the presented model can be readily expanded to take in pharmacological trials and genetic mutations, such as those involved in hypertrophic cardiomyopathy, and study arrhythmia trigger mechanisms.


Asunto(s)
Potenciales de Acción/fisiología , Fenómenos Electrofisiológicos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Potenciales de Acción/efectos de los fármacos , Agonistas de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Simulación por Computador , Fenómenos Electrofisiológicos/efectos de los fármacos , Humanos , Modelos Teóricos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Verapamilo/farmacología
8.
Front Pharmacol ; 12: 604713, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841140

RESUMEN

Objectives: Improvements in human stem cell-derived cardiomyocyte (hSC-CM) technology have promoted their use for drug testing and disease investigations. Several in silico hSC-CM models have been proposed to augment interpretation of experimental findings through simulations. This work aims to assess the response of three hSC-CM in silico models (Koivumäki2018, Kernik2019, and Paci2020) to simulated drug action, and compare simulation results against in vitro data for 15 drugs. Methods: First, simulations were conducted considering 15 drugs, using a simple pore-block model and experimental data for seven ion channels. Similarities and differences were analyzed in the in silico responses of the three models to drugs, in terms of Ca2+ transient duration (CTD90) and occurrence of arrhythmic events. Then, the sensitivity of each model to different degrees of blockage of Na+ (INa), L-type Ca2+ (ICaL), and rapid delayed rectifying K+ (IKr) currents was quantified. Finally, we compared the drug-induced effects on CTD90 against the corresponding in vitro experiments. Results: The observed CTD90 changes were overall consistent among the in silico models, all three showing changes of smaller magnitudes compared to the ones measured in vitro. For example, sparfloxacin 10 µM induced +42% CTD90 prolongation in vitro, and +17% (Koivumäki2018), +6% (Kernik2019), and +9% (Paci2020) in silico. Different arrhythmic events were observed following drug application, mainly for drugs affecting IKr. Paci2020 and Kernik2019 showed only repolarization failure, while Koivumäki2018 also displayed early and delayed afterdepolarizations. The spontaneous activity was suppressed by Na+ blockers and by drugs with similar effects on ICaL and IKr in Koivumäki2018 and Paci2020, while only by strong ICaL blockers, e.g. nisoldipine, in Kernik2019. These results were confirmed by the sensitivity analysis. Conclusion: To conclude, The CTD90 changes observed in silico are qualitatively consistent with our in vitro data, although our simulations show differences in drug responses across the hSC-CM models, which could stem from variability in the experimental data used in their construction.

9.
J Cardiovasc Pharmacol ; 77(3): 300-316, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33323698

RESUMEN

ABSTRACT: Despite major efforts by clinicians and researchers, cardiac arrhythmia remains a leading cause of morbidity and mortality in the world. Experimental work has relied on combining high-throughput strategies with standard molecular and electrophysiological studies, which are, to a great extent, based on the use of animal models. Because this poses major challenges for translation, the progress in the development of novel antiarrhythmic agents and clinical care has been mostly disappointing. Recently, the advent of human induced pluripotent stem cell-derived cardiomyocytes has opened new avenues for both basic cardiac research and drug discovery; now, there is an unlimited source of cardiomyocytes of human origin, both from healthy individuals and patients with cardiac diseases. Understanding arrhythmic mechanisms is one of the main use cases of human induced pluripotent stem cell-derived cardiomyocytes, in addition to pharmacological cardiotoxicity and efficacy testing, in vitro disease modeling, developing patient-specific models and personalized drugs, and regenerative medicine. Here, we review the advances that the human induced pluripotent stem cell-derived-based modeling systems have brought so far regarding the understanding of both arrhythmogenic triggers and substrates, while also briefly speculating about the possibilities in the future.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Animales , Antiarrítmicos/farmacología , Cardiotoxicidad/etiología , Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Humanos
10.
Quant Imaging Med Surg ; 10(10): 1894-1907, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33014723

RESUMEN

BACKGROUND: Several studies suggest that the evaluation of left atrial (LA) fibrosis is a relevant information for the assessment of the appropriate strategy in catheter ablation in atrial fibrillation (AF). Late gadolinium enhanced (LGE) cardiac magnetic resonance imaging (MRI) is a non-invasive technique, which might be employed for the non-invasive quantification of LA myocardial fibrotic tissue in patients with AF. Nowadays, the analysis of LGE MRI relies on manual tracing of LA boundaries and this procedure is time-consuming and prone to high inter-observer variability given the different degrees of observers' experience, LA wall thickness and data resolution. Therefore, an automated segmentation approach of the atrial cavity for the quantification of scar tissue would be highly desirable. METHODS: This study focuses on the design of a fully automated LGE MRI segmentation pipeline which includes a convolutional neural network (CNN) based on the successful architecture U-Net. The CNN was trained, validated and tested end-to-end with the data available from the Statistical Atlases and Computational Modelling of the Heart 2018 Atrial Segmentation Challenge (100 cardiac data). Two different approaches were tested: using both stacks of 2-D axial slices and using 3-D data (with the appropriate changes in the baseline architecture). In the latter approach, thanks to the 3-D convolution operator, all the information underlying 3-D data can be exploited. Once the training was completed using 80 cardiac data, a post-processing step was applied on 20 predicted segmentations belonging to the test set. RESULTS: By applying the 2-D and 3-D approaches, average Dice coefficient and mean Hausdorff distances were 0.896, 0.914, and 8.98 mm, 8.34 mm, respectively. Volumes of the anatomical LA meshes from the automated analysis were highly correlated with the volumes from ground truth [2-D: r=0.978, y=0.94x+0.07, bias=3.5 ml (5.6%), SD=5.3 mL (8.5%); 3-D: r=0.982, y=0.92x+2.9, bias=2.1 mL (3.5%), SD=5.2 mL (8.4%)]. CONCLUSIONS: These results suggest the proposed approach is feasible and provides accurate results. Despite the increase of the number of trainable parameters, the proposed 3-D CNN learns better features leading to higher performance, feasible for a real clinical application.

11.
Front Physiol ; 11: 314, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351400

RESUMEN

The importance of electrolyte concentrations for cardiac function is well established. Electrolyte variations can lead to arrhythmias onset, due to their important role in the action potential (AP) genesis and in maintaining cell homeostasis. However, most of the human AP computer models available in literature were developed with constant electrolyte concentrations, and fail to simulate physiological changes induced by electrolyte variations. This is especially true for Ca2+, even in the O'Hara-Rudy model (ORd), one of the most widely used models in cardiac electrophysiology. Therefore, the present work develops a new human ventricular model (BPS2020), based on ORd, able to simulate the inverse dependence of AP duration (APD) on extracellular Ca2+ concentration ([Ca2+]o), and APD rate dependence at 4 mM extracellular K+. The main changes needed with respect to ORd are: (i) an increased sensitivity of L-type Ca2+ current inactivation to [Ca2+]o; (ii) a single compartment description of the sarcoplasmic reticulum; iii) the replacement of Ca2+ release. BPS2020 is able to simulate the physiological APD-[Ca2+]o relationship, while also retaining the well-reproduced properties of ORd (APD rate dependence, restitution, accommodation and current block effects). We also used BPS2020 to generate an experimentally-calibrated population of models to investigate: (i) the occurrence of repolarization abnormalities in response to hERG current block; (ii) the rate adaptation variability; (iii) the occurrence of alternans and delayed after-depolarizations at fast pacing. Our results indicate that we successfully developed an improved version of ORd, which can be used to investigate electrophysiological changes and pro-arrhythmic abnormalities induced by electrolyte variations and current block at multiple rates and at the population level.

12.
Gigascience ; 9(5)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32449777

RESUMEN

BACKGROUND: Omics technologies have been widely applied in toxicology studies to investigate the effects of different substances on exposed biological systems. A classical toxicogenomic study consists in testing the effects of a compound at different dose levels and different time points. The main challenge consists in identifying the gene alteration patterns that are correlated to doses and time points. The majority of existing methods for toxicogenomics data analysis allow the study of the molecular alteration after the exposure (or treatment) at each time point individually. However, this kind of analysis cannot identify dynamic (time-dependent) events of dose responsiveness. RESULTS: We propose TinderMIX, an approach that simultaneously models the effects of time and dose on the transcriptome to investigate the course of molecular alterations exerted in response to the exposure. Starting from gene log fold-change, TinderMIX fits different integrated time and dose models to each gene, selects the optimal one, and computes its time and dose effect map; then a user-selected threshold is applied to identify the responsive area on each map and verify whether the gene shows a dynamic (time-dependent) and dose-dependent response; eventually, responsive genes are labelled according to the integrated time and dose point of departure. CONCLUSIONS: To showcase the TinderMIX method, we analysed 2 drugs from the Open TG-GATEs dataset, namely, cyclosporin A and thioacetamide. We first identified the dynamic dose-dependent mechanism of action of each drug and compared them. Our analysis highlights that different time- and dose-integrated point of departure recapitulates the toxicity potential of the compounds as well as their dynamic dose-dependent mechanism of action.


Asunto(s)
Biología Computacional/métodos , Programas Informáticos , Toxicogenética/métodos , Algoritmos , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Pruebas de Farmacogenómica , Variantes Farmacogenómicas
13.
Biophys J ; 118(10): 2596-2611, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32298635

RESUMEN

High-throughput in vitro drug assays have been impacted by recent advances in human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) technology and by contact-free all-optical systems simultaneously measuring action potentials (APs) and Ca2+ transients (CaTrs). Parallel computational advances have shown that in silico simulations can predict drug effects with high accuracy. We combine these in vitro and in silico technologies and demonstrate the utility of high-throughput experimental data to refine in silico hiPSC-CM populations and to predict and explain drug action mechanisms. Optically obtained hiPSC-CM APs and CaTrs were used from spontaneous activity and under optical pacing in control and drug conditions at multiple doses. An updated version of the Paci2018 model was developed to refine the description of hiPSC-CM spontaneous electrical activity; a population of in silico hiPSC-CMs was constructed and calibrated using simultaneously recorded APs and CaTrs. We tested in silico five drugs (astemizole, dofetilide, ibutilide, bepridil, and diltiazem) and compared the outcomes to in vitro optical recordings. Our simulations showed that physiologically accurate population of models can be obtained by integrating AP and CaTr control records. Thus, constructed population of models correctly predicted the drug effects and occurrence of adverse episodes, even though the population was optimized only based on control data and in vitro drug testing data were not deployed during its calibration. Furthermore, the in silico investigation yielded mechanistic insights; e.g., through simulations, bepridil's more proarrhythmic action in adult cardiomyocytes compared to hiPSC-CMs could be traced to the different expression of ion currents in the two. Therefore, our work 1) supports the utility of all-optical electrophysiology in providing high-content data to refine experimentally calibrated populations of in silico hiPSC-CMs, 2) offers insights into certain limitations when translating results obtained in hiPSC-CMs to humans, and 3) shows the strength of combining high-throughput in vitro and population in silico approaches.


Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciales de Acción , Adulto , Simulación por Computador , Evaluación de Medicamentos , Humanos , Miocitos Cardíacos
14.
Clin Pharmacol Ther ; 107(1): 102-111, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31709525

RESUMEN

This white paper presents principles for validating proarrhythmia risk prediction models for regulatory use as discussed at the In Silico Breakout Session of a Cardiac Safety Research Consortium/Health and Environmental Sciences Institute/US Food and Drug Administration-sponsored Think Tank Meeting on May 22, 2018. The meeting was convened to evaluate the progress in the development of a new cardiac safety paradigm, the Comprehensive in Vitro Proarrhythmia Assay (CiPA). The opinions regarding these principles reflect the collective views of those who participated in the discussion of this topic both at and after the breakout session. Although primarily discussed in the context of in silico models, these principles describe the interface between experimental input and model-based interpretation and are intended to be general enough to be applied to other types of nonclinical models for proarrhythmia assessment. This document was developed with the intention of providing a foundation for more consistency and harmonization in developing and validating different models for proarrhythmia risk prediction using the example of the CiPA paradigm.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Simulación por Computador , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Medición de Riesgo/métodos , Arritmias Cardíacas/prevención & control , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Modelos Teóricos , Estudios de Validación como Asunto
15.
Int J Cardiovasc Imaging ; 35(6): 1149-1159, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30820803

RESUMEN

The diagnostic imaging techniques currently used to evaluate the arterial atherosclerosis hinge on the manual marking and calculation of the stenosis degree. However, the manual assessment is highly dependent on the operator and characterized by low replicability. The study aimed to develop a fully-automated tool for the segmentation and analysis of atherosclerosis in the extracranial carotid arteries. The dataset consisted of 59 randomly-chosen individuals who had undergone head-and-neck computed tomography angiography (CTA), at the Tampere University Hospital, Tampere, Finland. The analysis algorithm was mainly based on the detection of carotid arteries, delineation of the vascular wall, and extraction of the atherosclerotic plaque. To improve the vascular detection rate, the model-based and volume-wide analytical approaches were deployed. A new fully-automated vascular imaging (VASIM) software tool was developed. For stenosis over 50%, the success rate was 83% for the detection and segmentation. Specificity and sensitivity of the algorithm were 25% and 83%, respectively. The overall accuracy was 71%. The VASIM tool is the first published approach for the fully-automated analysis of atherosclerosis in extracranial carotid arteries. The tool provides new outputs, which may help with the quantitative and qualitative, clinical evaluation of the atherosclerosis burden and evolution. The findings from this study provide a basis for the further development of automated atherosclerosis diagnosis and plaque analysis with CTA.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Angiografía por Tomografía Computarizada/métodos , Tomografía Computarizada Multidetector/métodos , Placa Aterosclerótica , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Automatización , Niño , Femenino , Finlandia , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Diseño de Software
16.
Int J Mol Sci ; 19(11)2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428582

RESUMEN

Loss-of-function long QT (LQT) mutations inducing LQT1 and LQT2 syndromes have been successfully translated to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) used as disease-specific models. However, their in vitro investigation mainly relies on experiments using small numbers of cells. This is especially critical when working with cells as heterogeneous as hiPSC-CMs. We aim (i) to investigate in silico the ionic mechanisms underlying LQT1 and LQT2 hiPSC-CM phenotypic variability, and (ii) to enable massive in silico drug tests on mutant hiPSC-CMs. We combined (i) data of control and mutant slow and rapid delayed rectifying K⁺ currents, IKr and IKs respectively, (ii) a recent in silico hiPSC-CM model, and (iii) the population of models paradigm to generate control and mutant populations for LQT1 and LQT2 cardiomyocytes. Our four populations contain from 1008 to 3584 models. In line with the experimental in vitro data, mutant in silico hiPSC-CMs showed prolonged action potential (AP) duration (LQT1: +14%, LQT2: +39%) and large electrophysiological variability. Finally, the mutant populations were split into normal-like hiPSC-CMs (with action potential duration similar to control) and at risk hiPSC-CMs (with clearly prolonged action potential duration). At risk mutant hiPSC-CMs carried higher expression of L-type Ca2+, lower expression of IKr and increased sensitivity to quinidine as compared to mutant normal-like hiPSC-CMs, resulting in AP abnormalities. In conclusion, we were able to reproduce the two most common LQT syndromes with large-scale simulations, which enable investigating biophysical mechanisms difficult to assess in vitro, e.g., how variations of ion current expressions in a physiological range can impact on AP properties of mutant hiPSC-CMs.


Asunto(s)
Arritmias Cardíacas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/metabolismo , Potenciales de Acción/fisiología , Arritmias Cardíacas/genética , Fenómenos Electrofisiológicos/genética , Fenómenos Electrofisiológicos/fisiología , Humanos , Mutación/genética , Técnicas de Placa-Clamp
17.
Front Physiol ; 9: 709, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997516

RESUMEN

The growing importance of human induced pluripotent stem cell-derived cardiomyoyctes (hiPSC-CMs), as patient-specific and disease-specific models for studying cellular cardiac electrophysiology or for preliminary cardiotoxicity tests, generated better understanding of hiPSC-CM biophysical mechanisms and great amount of action potential and calcium transient data. In this paper, we propose a new hiPSC-CM in silico model, with particular attention to Ca2+ handling. We used (i) the hiPSC-CM Paci2013 model as starting point, (ii) a new dataset of Ca2+ transient measurements to tune the parameters of the inward and outward Ca2+ fluxes of sarcoplasmic reticulum, and (iii) an automatic parameter optimization to fit action potentials and Ca2+ transients. The Paci2018 model simulates, together with the typical hiPSC-CM spontaneous action potentials, more refined Ca2+ transients and delayed afterdepolarizations-like abnormalities, which the old Paci2013 was not able to predict due to its mathematical formulation. The Paci2018 model was validated against (i) the same current blocking experiments used to validate the Paci2013 model, and (ii) recently published data about effects of different extracellular ionic concentrations. In conclusion, we present a new and more versatile in silico model, which will provide a platform for modeling the effects of drugs or mutations that affect Ca2+ handling in hiPSC-CMs.

18.
Heart Rhythm ; 14(11): 1704-1712, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28756098

RESUMEN

BACKGROUND: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are in vitro models with the clear advantages of their human origin and suitability for human disease investigations. However, limitations include their incomplete characterization and variability reported in different cell lines and laboratories. OBJECTIVE: The purpose of this study was to investigate in silico ionic mechanisms potentially explaining the phenotypic variability of hiPSC-CMs in long QT syndrome type 3 (LQT3) and their response to antiarrhythmic drugs. METHODS: Populations of in silico hiPSC-CM models were constructed and calibrated for control (n = 1,463 models) and LQT3 caused by INaL channelopathy (n = 1,401 models), using experimental recordings for late sodium current (INaL) and action potentials (APs). Antiarrhythmic drug therapy was evaluated by simulating mexiletine and ranolazine multichannel effects. RESULTS: As in experiments, LQT3 hiPSC-CMs yield prolonged action potential duration at 90% repolarization (APD90) (+34.3% than controls) and large electrophysiological variability. LQT3 hiPSC-CMs with symptomatic APs showed overexpression of ICaL, IK1, and INaL, underexpression of IKr, and increased sensitivity to both drugs compared to asymptomatic LQT3 models. Simulations showed that both mexiletine and ranolazine corrected APD prolongation in the LQT3 population but also highlighted differences in drug response. Mexiletine stops spontaneous APs in more LQT3 hiPSC-CMs models than ranolazine (784/1,401 vs 53/1,401) due to its stronger action on INa. CONCLUSION: In silico simulations demonstrate our ability to recapitulate variability in LQT3 and control hiPSC-CM phenotypes, and the ability of mexiletine and ranolazine to reduce APD prolongation, in agreement with experiments. The in silico models also identify potential ionic mechanisms of phenotypic variability in LQT3 hiPSC-CMs, explaining APD prolongation in symptomatic vs asymptomatic LQT3 hiPSC-CMs.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco/tratamiento farmacológico , Células Madre Pluripotentes Inducidas/patología , Síndrome de QT Prolongado/tratamiento farmacológico , Mexiletine/farmacología , Miocitos Cardíacos/patología , Potenciales de Acción , Antiarrítmicos/farmacología , Variación Biológica Poblacional , Trastorno del Sistema de Conducción Cardíaco/patología , Trastorno del Sistema de Conducción Cardíaco/fisiopatología , Línea Celular , Simulación por Computador , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Síndrome de QT Prolongado/patología , Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp
19.
Int J Cardiovasc Imaging ; 32(8): 1299-310, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27142430

RESUMEN

Atherosclerosis is one of the leading causes of mortality in the western world. Computed tomography angiography (CTA) is the conventional imaging method used for pre-surgery assessment of the blood flow within the carotid vessel. In this paper, we present a proof of concept of a novel, fast and operator independent protocol for the automatic detection (seeding) of the carotid arteries in CTA in the thorax and upper neck region. The dataset is composed of 14 patients' CTA images of the neck region. The performance of this method is compared with manual seeding by four trained operators. Inter-operator variation is also assessed based on the dataset. The minimum, average and maximum coefficient of variation among the operators was (0, 2, 5 %), respectively. The performance of our method is comparable with the state of the art alternative, presenting a detection rate of 75 and 71 % for the lowest and uppermost image levels, respectively. The mean processing time is 167 s per patient versus 386 s for manual seeding. There are no significant differences between the manual and automatic seed positions in the volumes (p = 0.29). A fast, operator independent protocol was developed for the automatic detection of carotid arteries in CTA. The results are encouraging and provide the basis for the creation of automatic detection and analysis tools for carotid arteries.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Angiografía por Tomografía Computarizada , Tomografía Computarizada Multidetector , Adulto , Anciano , Anciano de 80 o más Años , Automatización , Arterias Carótidas/fisiopatología , Estenosis Carotídea/fisiopatología , Medios de Contraste/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Interpretación de Imagen Radiográfica Asistida por Computador , Flujo Sanguíneo Regional , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Programas Informáticos
20.
PLoS One ; 11(2): e0149399, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26895509

RESUMEN

AIMS: A fast, non-invasive and observer-independent method to analyze the homogeneity and maturity of human pluripotent stem cell (hPSC) derived retinal pigment epithelial (RPE) cells is warranted to assess the suitability of hPSC-RPE cells for implantation or in vitro use. The aim of this work was to develop and validate methods to create ensembles of state-of-the-art texture descriptors and to provide a robust classification tool to separate three different maturation stages of RPE cells by using phase contrast microscopy images. The same methods were also validated on a wide variety of biological image classification problems, such as histological or virus image classification. METHODS: For image classification we used different texture descriptors, descriptor ensembles and preprocessing techniques. Also, three new methods were tested. The first approach was an ensemble of preprocessing methods, to create an additional set of images. The second was the region-based approach, where saliency detection and wavelet decomposition divide each image in two different regions, from which features were extracted through different descriptors. The third method was an ensemble of Binarized Statistical Image Features, based on different sizes and thresholds. A Support Vector Machine (SVM) was trained for each descriptor histogram and the set of SVMs combined by sum rule. The accuracy of the computer vision tool was verified in classifying the hPSC-RPE cell maturation level. DATASET AND RESULTS: The RPE dataset contains 1862 subwindows from 195 phase contrast images. The final descriptor ensemble outperformed the most recent stand-alone texture descriptors, obtaining, for the RPE dataset, an area under ROC curve (AUC) of 86.49% with the 10-fold cross validation and 91.98% with the leave-one-image-out protocol. The generality of the three proposed approaches was ascertained with 10 more biological image datasets, obtaining an average AUC greater than 97%. CONCLUSIONS: Here we showed that the developed ensembles of texture descriptors are able to classify the RPE cell maturation stage. Moreover, we proved that preprocessing and region-based decomposition improves many descriptors' accuracy in biological dataset classification. Finally, we built the first public dataset of stem cell-derived RPE cells, which is publicly available to the scientific community for classification studies. The proposed tool is available at https://www.dei.unipd.it/node/2357 and the RPE dataset at http://www.biomeditech.fi/data/RPE_dataset/. Both are available at https://figshare.com/s/d6fb591f1beb4f8efa6f.


Asunto(s)
Diferenciación Celular , Epitelio Pigmentado de la Retina/citología , Células Madre/citología , Máquina de Vectores de Soporte , Algoritmos , Animales , Área Bajo la Curva , Línea Celular , Conjuntos de Datos como Asunto , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA