Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 35(1): 102112, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38292874

RESUMEN

Chronic hepatitis B virus (HBV) infection remains a global health problem due to the lack of treatments that prevent viral rebound from HBV covalently closed circular (ccc)DNA. In addition, HBV DNA integrates in the human genome, serving as a source of hepatitis B surface antigen (HBsAg) expression, which impairs anti-HBV immune responses. Cytosine base editors (CBEs) enable precise conversion of a cytosine into a thymine within DNA. In this study, CBEs were used to introduce stop codons in HBV genes, HBs and Precore. Transfection with mRNA encoding a CBE and a combination of two guide RNAs led to robust cccDNA editing and sustained reduction of the viral markers in HBV-infected HepG2-NTCP cells and primary human hepatocytes. Furthermore, base editing efficiently reduced HBsAg expression from HBV sequences integrated within the genome of the PLC/PRF/5 and HepG2.2.15 cell lines. Finally, in the HBV minicircle mouse model, using lipid nanoparticulate delivery, we demonstrated antiviral efficacy of the base editing approach with a >3log10 reduction in serum HBV DNA and >2log10 reduction in HBsAg, and 4/5 mice showing HBsAg loss. Combined, these data indicate that base editing can introduce mutations in both cccDNA and integrated HBV DNA, abrogating HBV replication and silencing viral protein expression.

2.
Mol Ther ; 30(4): 1396-1406, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35121111

RESUMEN

Alpha-1 antitrypsin deficiency (AATD) is a rare autosomal codominant disease caused by mutations within the SERPINA1 gene. The most prevalent variant in patients is PiZ SERPINA1, containing a single G > A transition mutation. PiZ alpha-1 antitrypsin (AAT) is prone to misfolding, leading to the accumulation of toxic aggregates within hepatocytes. In addition, the abnormally low level of AAT secreted into circulation provides insufficient inhibition of neutrophil elastase within the lungs, eventually causing emphysema. Cytosine and adenine base editors enable the programmable conversion of C⋅G to T⋅A and A⋅T to G⋅C base pairs, respectively. In this study, two different base editing approaches were developed: use of a cytosine base editor to install a compensatory mutation (p.Met374Ile) and use of an adenine base editor to mediate the correction of the pathogenic PiZ mutation. After treatment with lipid nanoparticles formulated with base editing reagents, PiZ-transgenic mice exhibited durable editing of SERPINA1 in the liver, increased serum AAT, and improved liver histology. These results indicate that base editing has the potential to address both lung and liver disease in AATD.


Asunto(s)
Edición Génica , Deficiencia de alfa 1-Antitripsina , Adenina/química , Adenina/uso terapéutico , Animales , Citosina/química , Citosina/uso terapéutico , Edición Génica/métodos , Humanos , Liposomas , Ratones , Mutación , Nanopartículas , alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/patología , Deficiencia de alfa 1-Antitripsina/terapia
3.
Mol Ther ; 29(11): 3219-3229, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34217893

RESUMEN

Alpha-1 antitrypsin deficiency (AATD) is most commonly caused by the Z mutation, a single-base substitution that leads to AAT protein misfolding and associated liver and lung disease. In this study, we apply adenine base editors to correct the Z mutation in patient induced pluripotent stem cells (iPSCs) and iPSC-derived hepatocytes (iHeps). We demonstrate that correction of the Z mutation in patient iPSCs reduces aberrant AAT accumulation and increases its secretion. Adenine base editing (ABE) of differentiated iHeps decreases ER stress in edited cells, as demonstrated by single-cell RNA sequencing. We find ABE to be highly efficient in iPSCs and do not identify off-target genomic mutations by whole-genome sequencing. These results reveal the feasibility and utility of base editing to correct the Z mutation in AATD patient cells.


Asunto(s)
Adenina , Sistemas CRISPR-Cas , Edición Génica , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/terapia , alfa 1-Antitripsina/genética , Biomarcadores , Diferenciación Celular/genética , Células Cultivadas , Estrés del Retículo Endoplásmico , Expresión Génica , Hepatocitos/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Mutación , alfa 1-Antitripsina/química
4.
Science ; 371(6531): 803-810, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33602850

RESUMEN

Although bespoke, sequence-specific proteases have the potential to advance biotechnology and medicine, generation of proteases with tailor-made cleavage specificities remains a major challenge. We developed a phage-assisted protease evolution system with simultaneous positive and negative selection and applied it to three botulinum neurotoxin (BoNT) light-chain proteases. We evolved BoNT/X protease into separate variants that preferentially cleave vesicle-associated membrane protein 4 (VAMP4) and Ykt6, evolved BoNT/F protease to selectively cleave the non-native substrate VAMP7, and evolved BoNT/E protease to cleave phosphatase and tensin homolog (PTEN) but not any natural BoNT protease substrate in neurons. The evolved proteases display large changes in specificity (218- to >11,000,000-fold) and can retain their ability to form holotoxins that self-deliver into primary neurons. These findings establish a versatile platform for reprogramming proteases to selectively cleave new targets of therapeutic interest.


Asunto(s)
Toxinas Botulínicas/metabolismo , Evolución Molecular Dirigida , Ingeniería de Proteínas , Animales , Bacteriófago M13/genética , Toxinas Botulínicas/química , Toxinas Botulínicas/genética , Dominio Catalítico , Línea Celular , Células Cultivadas , Humanos , Mutación , Neuronas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Biblioteca de Péptidos , Dominios Proteicos , Proteínas R-SNARE/metabolismo , Ratas , Selección Genética , Especificidad por Sustrato , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
5.
Nat Biotechnol ; 38(7): 892-900, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32284586

RESUMEN

The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5-A7 and ~3.2× higher editing at positions A3-A4 and A8-A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34+ cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes HBG1 and HBG2 with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98-99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA.


Asunto(s)
Adenina/metabolismo , Sistemas CRISPR-Cas/genética , Citosina/metabolismo , ARN Guía de Kinetoplastida/genética , Adenosina Desaminasa , ADN/genética , Edición Génica/métodos , Células HEK293 , Humanos , Mutación/genética
6.
Nature ; 559(7714): E8, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29720650

RESUMEN

In this Article, owing to an error during the production process, in Fig. 1a, the dark blue and light blue wedges were incorrectly labelled as 'G•C → T•A' and 'G•C → A•T', instead of 'C•G → T•A' and 'C•G → A•T', respectively. Fig. 1 has been corrected online.

7.
Nature ; 551(7681): 464-471, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29160308

RESUMEN

The spontaneous deamination of cytosine is a major source of transitions from C•G to T•A base pairs, which account for half of known pathogenic point mutations in humans. The ability to efficiently convert targeted A•T base pairs to G•C could therefore advance the study and treatment of genetic diseases. The deamination of adenine yields inosine, which is treated as guanine by polymerases, but no enzymes are known to deaminate adenine in DNA. Here we describe adenine base editors (ABEs) that mediate the conversion of A•T to G•C in genomic DNA. We evolved a transfer RNA adenosine deaminase to operate on DNA when fused to a catalytically impaired CRISPR-Cas9 mutant. Extensive directed evolution and protein engineering resulted in seventh-generation ABEs that convert targeted A•T base pairs efficiently to G•C (approximately 50% efficiency in human cells) with high product purity (typically at least 99.9%) and low rates of indels (typically no more than 0.1%). ABEs introduce point mutations more efficiently and cleanly, and with less off-target genome modification, than a current Cas9 nuclease-based method, and can install disease-correcting or disease-suppressing mutations in human cells. Together with previous base editors, ABEs enable the direct, programmable introduction of all four transition mutations without double-stranded DNA cleavage.


Asunto(s)
Emparejamiento Base/genética , Edición Génica/métodos , Genoma Humano/genética , Adenosina Desaminasa/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , División del ADN , Células HEK293 , Humanos , Modelos Moleculares , Polimorfismo de Nucleótido Simple/genética
8.
Nat Commun ; 8(1): 956, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038472

RESUMEN

Here we perform phage-assisted continuous evolution (PACE) of TEV protease, which canonically cleaves ENLYFQS, to cleave a very different target sequence, HPLVGHM, that is present in human IL-23. A protease emerging from ∼2500 generations of PACE contains 20 non-silent mutations, cleaves human IL-23 at the target peptide bond, and when pre-mixed with IL-23 in primary cultures of murine splenocytes inhibits IL-23-mediated immune signaling. We characterize the substrate specificity of this evolved enzyme, revealing shifted and broadened specificity changes at the six positions in which the target amino acid sequence differed. Mutational dissection and additional protease specificity profiling reveal the molecular basis of some of these changes. This work establishes the capability of changing the substrate specificity of a protease at many positions in a practical time scale and provides a foundation for the development of custom proteases that catalytically alter or destroy target proteins for biotechnological and therapeutic applications.Proteases are promising therapeutics to treat diseases such as hemophilia which are due to endogenous protease deficiency. Here the authors use phage-assisted continuous evolution to evolve a variant TEV protease with altered target peptide sequence specificities.


Asunto(s)
Bacteriófagos/genética , Endopeptidasas/genética , Evolución Molecular , Interleucina-23/metabolismo , Secuencia de Aminoácidos , Endopeptidasas/metabolismo , Humanos , Mutación , Transducción de Señal , Especificidad por Sustrato
9.
Sci Adv ; 3(8): eaao4774, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28875174

RESUMEN

We recently developed base editing, the programmable conversion of target C:G base pairs to T:A without inducing double-stranded DNA breaks (DSBs) or requiring homology-directed repair using engineered fusions of Cas9 variants and cytidine deaminases. Over the past year, the third-generation base editor (BE3) and related technologies have been successfully used by many researchers in a wide range of organisms. The product distribution of base editing-the frequency with which the target C:G is converted to mixtures of undesired by-products, along with the desired T:A product-varies in a target site-dependent manner. We characterize determinants of base editing outcomes in human cells and establish that the formation of undesired products is dependent on uracil N-glycosylase (UNG) and is more likely to occur at target sites containing only a single C within the base editing activity window. We engineered CDA1-BE3 and AID-BE3, which use cytidine deaminase homologs that increase base editing efficiency for some sequences. On the basis of these observations, we engineered fourth-generation base editors (BE4 and SaBE4) that increase the efficiency of C:G to T:A base editing by approximately 50%, while halving the frequency of undesired by-products compared to BE3. Fusing BE3, BE4, SaBE3, or SaBE4 to Gam, a bacteriophage Mu protein that binds DSBs greatly reduces indel formation during base editing, in most cases to below 1.5%, and further improves product purity. BE4, SaBE4, BE4-Gam, and SaBE4-Gam represent the state of the art in C:G-to-T:A base editing, and we recommend their use in future efforts.


Asunto(s)
Bacteriófago mu/fisiología , Emparejamiento Base , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Virales/metabolismo , Línea Celular , Activación Enzimática , Frecuencia de los Genes , Orden Génico , Humanos , Mutación INDEL , Uracil-ADN Glicosidasa/metabolismo
10.
Nat Biotechnol ; 35(4): 371-376, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28191901

RESUMEN

Base editing induces single-nucleotide changes in the DNA of living cells using a fusion protein containing a catalytically defective Streptococcus pyogenes Cas9, a cytidine deaminase, and an inhibitor of base excision repair. This genome editing approach has the advantage that it does not require formation of double-stranded DNA breaks or provision of a donor DNA template. Here we report the development of five C to T (or G to A) base editors that use natural and engineered Cas9 variants with different protospacer-adjacent motif (PAM) specificities to expand the number of sites that can be targeted by base editing 2.5-fold. Additionally, we engineered base editors containing mutated cytidine deaminase domains that narrow the width of the editing window from ∼5 nucleotides to as little as 1-2 nucleotides. We thereby enabled discrimination of neighboring C nucleotides, which would otherwise be edited with similar efficiency, and doubled the number of disease-associated target Cs able to be corrected preferentially over nearby non-target Cs.


Asunto(s)
Proteínas Bacterianas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Citidina Desaminasa/genética , Endonucleasas/genética , Edición Génica/métodos , Genoma/genética , Proteínas Recombinantes de Fusión/genética , Composición de Base/genética , Proteína 9 Asociada a CRISPR
11.
Nature ; 533(7603): 420-4, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27096365

RESUMEN

Current genome-editing technologies introduce double-stranded (ds) DNA breaks at a target locus as the first step to gene correction. Although most genetic diseases arise from point mutations, current approaches to point mutation correction are inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus resulting from the cellular response to dsDNA breaks. Here we report the development of 'base editing', a new approach to genome editing that enables the direct, irreversible conversion of one target DNA base into another in a programmable manner, without requiring dsDNA backbone cleavage or a donor template. We engineered fusions of CRISPR/Cas9 and a cytidine deaminase enzyme that retain the ability to be programmed with a guide RNA, do not induce dsDNA breaks, and mediate the direct conversion of cytidine to uridine, thereby effecting a C→T (or G→A) substitution. The resulting 'base editors' convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease. In four transformed human and murine cell lines, second- and third-generation base editors that fuse uracil glycosylase inhibitor, and that use a Cas9 nickase targeting the non-edited strand, manipulate the cellular DNA repair response to favour desired base-editing outcomes, resulting in permanent correction of ~15-75% of total cellular DNA with minimal (typically ≤1%) indel formation. Base editing expands the scope and efficiency of genome editing of point mutations.


Asunto(s)
Sistemas CRISPR-Cas , Citidina Desaminasa/metabolismo , Citidina/genética , Ingeniería Genética/métodos , Genoma/genética , Mutación Puntual/genética , Uridina/genética , Desaminasas APOBEC-1 , Animales , Apolipoproteína E4/genética , Secuencia de Bases , Proteínas Asociadas a CRISPR/metabolismo , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN/genética , ADN/metabolismo , División del ADN , Reparación del ADN , Desoxirribonucleasa I/metabolismo , Genes p53/genética , Humanos , Mutación INDEL/genética , Ratones , ARN Guía de Kinetoplastida/genética , Moldes Genéticos , Uracil-ADN Glicosidasa/antagonistas & inhibidores
12.
Nat Rev Genet ; 16(7): 379-94, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26055155

RESUMEN

Directed evolution has proved to be an effective strategy for improving or altering the activity of biomolecules for industrial, research and therapeutic applications. The evolution of proteins in the laboratory requires methods for generating genetic diversity and for identifying protein variants with desired properties. This Review describes some of the tools used to diversify genes, as well as informative examples of screening and selection methods that identify or isolate evolved proteins. We highlight recent cases in which directed evolution generated enzymatic activities and substrate specificities not known to exist in nature.


Asunto(s)
Evolución Molecular Dirigida , Ingeniería de Proteínas/métodos , Proteínas/genética , Proteínas/metabolismo , Animales , Técnicas Genéticas , Humanos , Especificidad por Sustrato
13.
Nat Commun ; 5: 5352, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25355134

RESUMEN

The laboratory evolution of protease enzymes has the potential to generate proteases with therapeutically relevant specificities and to assess the vulnerability of protease inhibitor drug candidates to the evolution of drug resistance. Here we describe a system for the continuous directed evolution of proteases using phage-assisted continuous evolution (PACE) that links the proteolysis of a target peptide to phage propagation through a protease-activated RNA polymerase (PA-RNAP). We use protease PACE in the presence of danoprevir or asunaprevir, two hepatitis C virus (HCV) protease inhibitor drug candidates in clinical trials, to continuously evolve HCV protease variants that exhibit up to 30-fold drug resistance in only 1 to 3 days of PACE. The predominant mutations evolved during PACE are mutations observed to arise in human patients treated with danoprevir or asunaprevir, demonstrating that protease PACE can rapidly identify the vulnerabilities of drug candidates to the evolution of clinically relevant drug resistance.


Asunto(s)
Farmacorresistencia Viral/genética , Evolución Molecular , Técnicas Genéticas , Hepacivirus/enzimología , Péptido Hidrolasas/genética , Secuencia de Aminoácidos , Bacteriófago M13 , Ciclopropanos , Expresión Génica , Humanos , Isoindoles , Isoquinolinas , Lactamas , Lactamas Macrocíclicas , Datos de Secuencia Molecular , Mutación , Prolina/análogos & derivados , Inhibidores de Proteasas , Sulfonamidas , Proteínas Virales/genética
14.
Proc Natl Acad Sci U S A ; 109(42): 16794-9, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23010923

RESUMEN

We study the primary root growth of wild-type Medicago truncatula plants in heterogeneous environments using 3D time-lapse imaging. The growth medium is a transparent hydrogel consisting of a stiff lower layer and a compliant upper layer. We find that the roots deform into a helical shape just above the gel layer interface before penetrating into the lower layer. This geometry is interpreted as a combination of growth-induced mechanical buckling modulated by the growth medium and a simultaneous twisting near the root tip. We study the helical morphology as the modulus of the upper gel layer is varied and demonstrate that the size of the deformation varies with gel stiffness as expected by a mathematical model based on the theory of buckled rods. Moreover, we show that plant-to-plant variations can be accounted for by biomechanically plausible values of the model parameters.


Asunto(s)
Medicago truncatula , Modelos Biológicos , Morfogénesis/fisiología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Fenómenos Biomecánicos , Hidrogel de Polietilenoglicol-Dimetacrilato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...