Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Res ; 231(Pt 1): 116033, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37142082

RESUMEN

The current study aimed to investigate the effects of lead nitrate exposure on the enzymatical, haematological, and histological changes in the gill, liver, and kidney of Pangasius hypophthalmus. The fish were divided into six groups and treated with different Pb concentrations. The LC50 value of Pb was 55.57 mg/L at 96 h for P. hypophthalmus, and sublethal toxicity was assessed for 45 days at 1/5th (11.47 mg/L) and 1/10th (5.57 mg/L) of LC50 concentration. Enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels, alkaline phosphate (ALP), and lactate dehydrogenase (LDH) content increased significantly during sublethal toxicity of Pb. The reduction of HCT and PCV indicates an anemic condition due to the toxicity of Pb. Differential leucocytes, lymphocytes, and monocytes and their % values significantly decreased, indicating Pb exposure. The main histological changes observed in the gills were the destruction of secondary lamellae, the fusion of adjacent gill lamellae, primary lamellae hypertrophy, and severe hyperplasia, while in kidney exposed to Pb showed melanomacrophages, increased periglomerular, peritubular space, vacuolation, shrunken glomerulus, destruction of tubular epithelium, and hypertrophy of distal convoluted segment. The liver showed severe necrosis and rupture of hepatic cells, hyper trepheoid bile duct, shifting of nuclei, and vascular hemorrhage, while in the brain, binucleus, mesoglea cells, vacuole, and ruptured nucleus were observed. In conclusion, P. hypophthalmus, which has been exposed to Pb has developed a number of toxicity markers. Consequently, prolonged exposure to higher Pb concentrations may be harmful to fish health. The findings strongly suggest that the lead had a detrimental impact on the P. hypophthalmus population, as well as on the water quality and non-target aquatic organisms.


Asunto(s)
Bagres , Metales Pesados , Contaminantes Químicos del Agua , Animales , Plomo/toxicidad , Metales Pesados/toxicidad , Antioxidantes/farmacología , Hígado , Branquias , Contaminantes Químicos del Agua/toxicidad
2.
Oxid Med Cell Longev ; 2022: 3088827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120599

RESUMEN

A simple, efficient, and ecofriendly method was employed to synthesize TiO2/ZrO2/SiO2 ternary nanocomposites using Prunus × yedoensis leaf extract (PYLE) that shows improved photocatalytic and antibacterial properties. The characterization of the obtained nanocomposites was done by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopic (EDS) analysis. The synthesized ternary nanocomposites with nanoscale pore diameters were investigated for the elimination of Reactive Red 120 (RR120) dye. The obtained results showed about 96.2% removal of RR120 dye from aqueous solution under sunlight irradiation. Furthermore, it shows promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The improved photocatalytic and antibacterial activity of TiO2/ZrO2/SiO2 may bring unique insights into the production of ternary nanocomposites and their applications in the environment and biomedical field.


Asunto(s)
Nanocompuestos , Prunus , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli , Nanocompuestos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Dióxido de Silicio/química , Titanio
3.
Chemosphere ; 307(Pt 3): 135951, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35964724

RESUMEN

Water pollution is a serious problem that threatens both developed and developing countries. Several methods have been used to purify contaminated water, among which the photocatalytic decomposition approach is widely used to purify contaminated water from organic pollutants. In this work, biomass derived SiO2 nanoparticles composite with TiO2 semiconductors used as an efficient photocatalyst for degradation of RhB dye molecules under UV-visible light irradiation is proclaimed. The different weight percentages of Arundo donax L. ash-derived SiO2 nanoparticles combined with TiO2 nanoparticles were prepared through the wet impregnation method. The photocatalytic degradation ability of the as-prepared samples has been scrutinized against the degradation of Rh B dye in which the pronounced photocatalytic degradation efficiency 93.7% is successfully achieved on 50 wt % SiO2-50 wt % TiO2 nanocomposite photocatalyst. The catalytic performance of the nanocomposite decreases with an increase of 50%-75% in SiO2 nanoparticles. There could have been a decrease in degradation efficiency due to an excess amount of SiO2 covering TiO2 nanoparticles, which prevented photons from reaching the nanoparticles. The efficiency of cyclic decomposition of the 50 wt% SiO2-50 wt% TiO2 composite showed only a slight change in photocatalytic capacity compared to the first cycle, which ensures the durability of the sample. However, the hydroxyl radical species play the main role in the degradation process, which has been confirmed by the scavenger test. The probable reaction mechanism is also deliberated in detail. The high photocatalytic performance of novel eco-friendly SiO2-TiO2 photocatalyst make it ideal for water purification applications.


Asunto(s)
Nanocompuestos , Nanopartículas , Contaminantes Químicos del Agua , Catálisis , Radical Hidroxilo , Poaceae , Dióxido de Silicio , Titanio/efectos de la radiación , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA