Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 412, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693516

RESUMEN

BACKGROUND: Thromboinflammation involving platelet adhesion to endothelial surface-associated von Willebrand factor (VWF) has been implicated in the accelerated progression of non-culprit plaques after MI. The aim of this study was to use arterial endothelial molecular imaging to mechanistically evaluate endothelial-associated VWF as a therapeutic target for reducing remote plaque activation after myocardial infarction (MI). METHODS: Hyperlipidemic mice deficient for the low-density lipoprotein receptor and Apobec-1 underwent closed-chest MI and were treated chronically with either: (i) recombinant ADAMTS13 which is responsible for proteolytic removal of VWF from the endothelial surface, (ii) N-acetylcysteine (NAC) which removes VWF by disulfide bond reduction, (iii) function-blocking anti-factor XI (FXI) antibody, or (iv) no therapy. Non-ischemic controls were also studied. At day 3 and 21, ultrasound molecular imaging was performed with probes targeted to endothelial-associated VWF A1-domain, platelet GPIbα, P-selectin and vascular cell adhesion molecule-1 (VCAM-1) at lesion-prone sites of the aorta. Histology was performed at day 21. RESULTS: Aortic signal for P-selectin, VCAM-1, VWF, and platelet-GPIbα were all increased several-fold (p < 0.01) in post-MI mice versus sham-treated animals at day 3 and 21. Treatment with NAC and ADAMTS13 significantly attenuated the post-MI increase for all four molecular targets by > 50% (p < 0.05 vs. non-treated at day 3 and 21). On aortic root histology, mice undergoing MI versus controls had 2-4 fold greater plaque size and macrophage content (p < 0.05), approximately 20-fold greater platelet adhesion (p < 0.05), and increased staining for markers of platelet transforming growth factor-ß1 signaling. Accelerated plaque growth and inflammatory activation was almost entirely prevented by ADAMTS13 and NAC. Inhibition of FXI had no significant effect on molecular imaging signal or plaque morphology. CONCLUSIONS: Plaque inflammatory activation in remote arteries after MI is strongly influenced by VWF-mediated platelet adhesion to the endothelium. These findings support investigation into new secondary preventive therapies for reducing non-culprit artery events after MI.


Asunto(s)
Proteína ADAMTS13 , Infarto del Miocardio , Factor de von Willebrand , Animales , Factor de von Willebrand/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/complicaciones , Proteína ADAMTS13/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Ratones , Placa Aterosclerótica/patología , Selectina-P/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Masculino , Imagen Molecular , Aorta/patología , Aorta/efectos de los fármacos , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Ratones Endogámicos C57BL
2.
Endocrinology ; 165(5)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38578949

RESUMEN

OBJECTIVES: Growth factor receptor bound protein 7 (GRB7) is a multidomain signaling adaptor. Members of the Grb7/10/14 family, specifically Gbrb10/14, have important roles in metabolism. We ablated the Grb7 gene in mice to examine its metabolic function. METHODS: Global ablation of Grb7 in FVB/NJ mice was generated. Growth, organ weight, food intake, and glucose homeostasis were measured. Insulin signaling was examined by Western blotting. Fat and lean body mass was measured by nuclear magnetic resonance, and body composition after fasting or high-fat diet was assessed. Energy expenditure was measured by indirect calorimetry. Expression of adiposity and lipid metabolism genes was measured by quantitative PCR. RESULTS: Grb7-null mice were viable, fertile, and without obvious phenotype. Grb7 ablation improved glycemic control and displayed sensitization to insulin signaling in the liver. Grb7-null females but not males had increased gonadal white adipose tissue mass. Following a 12-week high-fat diet, Grb7-null female mice gained fat body mass and developed relative insulin resistance. With fasting, there was less decrease in fat body mass in Grb7-null female mice. Female mice with Grb7 ablation had increased baseline food intake, less energy expenditure, and displayed a decrease in the expression of lipolysis and adipose browning genes in gonadal white adipose tissue by transcript and protein analysis. CONCLUSION: Our study suggests that Grb7 is a negative regulator of glycemic control. Our results reveal a role for Grb7 in female mice in the regulation of the visceral adipose tissue mass, a powerful predictor of metabolic dysfunction in obesity.


Asunto(s)
Grasa Abdominal , Metabolismo Energético , Proteína Adaptadora GRB7 , Insulina , Ratones Noqueados , Transducción de Señal , Animales , Femenino , Masculino , Ratones , Grasa Abdominal/metabolismo , Glucemia/metabolismo , Composición Corporal/genética , Dieta Alta en Grasa , Metabolismo Energético/genética , Proteína Adaptadora GRB7/genética , Proteína Adaptadora GRB7/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...