Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 597(9): 1213-1224, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36310378

RESUMEN

For many inflammatory cytokines, the response elicited is dependent on the recruitment of the tumour necrosis factor receptor-associated factor (TRAF) family of adaptor proteins. All TRAF proteins have a trimeric C-terminal TRAF domain, while at the N-terminus most TRAFs have a RING domain that forms dimers. The symmetry mismatch of the N- and C-terminal halves of TRAF proteins means that when receptors cluster, it is presumed that RING dimers connect TRAF trimers to form a network. Here, using purified TRAF6 proteins, we provide direct evidence in support of this model, and we show that TRAF6 trimers bind Lys63-linked ubiquitin chains to promote their processive assembly. This study provides critical evidence in support of TRAF trimers as key players in signalling.


Asunto(s)
Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Dimerización , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitina/metabolismo , Dominios Proteicos , Factor 2 Asociado a Receptor de TNF/metabolismo
2.
Nat Commun ; 12(1): 5708, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588452

RESUMEN

Ufmylation is a post-translational modification essential for regulating key cellular processes. A three-enzyme cascade involving E1, E2 and E3 is required for UFM1 attachment to target proteins. How UBA5 (E1) and UFC1 (E2) cooperatively activate and transfer UFM1 is still unclear. Here, we present the crystal structure of UFC1 bound to the C-terminus of UBA5, revealing how UBA5 interacts with UFC1 via a short linear sequence, not observed in other E1-E2 complexes. We find that UBA5 has a region outside the adenylation domain that is dispensable for UFC1 binding but critical for UFM1 transfer. This region moves next to UFC1's active site Cys and compensates for a missing loop in UFC1, which exists in other E2s and is needed for the transfer. Overall, our findings advance the understanding of UFM1's conjugation machinery and may serve as a basis for the development of ufmylation inhibitors.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Dominio Catalítico/genética , Humanos , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/genética , Proteínas/genética , Proteínas/aislamiento & purificación , Proteínas/ultraestructura , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/aislamiento & purificación , Enzimas Activadoras de Ubiquitina/ultraestructura , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/aislamiento & purificación , Enzimas Ubiquitina-Conjugadoras/ultraestructura , Difracción de Rayos X
3.
J Mol Biol ; 433(8): 166844, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33539883

RESUMEN

Tumour necrosis factor (TNF) receptor associated factor (TRAF) family members share a common domain architecture, but play non-redundant physiological roles in cell signalling. At the N terminus, most TRAFs have a RING domain, followed by a series of Zinc finger (ZF) domains. The RING domain of TRAF6 dimerizes, and the RING homodimer together with the first ZF assembles ubiquitin chains that form a platform which facilitates activation of downstream kinases. The RING dimer interface is conserved amongst TRAF proteins, suggesting that functional heterodimers could be possible. Here we report the structure of the TRAF5-TRAF6 RING heterodimer, which accounts for the stability of the heterodimer as well as its ability to assemble ubiquitin chains. We also show that the RING domain of TRAF6 heterodimerizes with TRAF3 and TRAF2, and demonstrate that the linker helix and first ZF of TRAF2 can cooperate with TRAF6 to promote chain assembly. Collectively our results suggest that TRAF RING homo- and hetero-dimers have the potential to bridge interaction of nearby TRAF trimers and modulate TRAF-mediated signalling.


Asunto(s)
Unión Proteica , Ubiquitina/química , Ubiquitinación , Dimerización , Humanos , Dominios y Motivos de Interacción de Proteínas , Receptores del Factor de Necrosis Tumoral/química , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Factor 5 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas , Dedos de Zinc
4.
J Mol Biol ; 431(3): 463-478, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30412706

RESUMEN

Modification of proteins by the ubiquitin-like protein, UFM1, requires activation of UFM1 by the E1-activating enzyme, UBA5. In humans, UBA5 possesses two isoforms, each comprising an adenylation domain, but only one containing an N-terminal extension. Currently, the role of the N-terminal extension in UFM1 activation is not clear. Here we provide structural and biochemical data on UBA5 N-terminal extension to understand its contribution to UFM1 activation. The crystal structures of the UBA5 long isoform bound to ATP with and without UFM1 show that the N-terminus not only is directly involved in ATP binding but also affects how the adenylation domain interacts with ATP. Surprisingly, in the presence of the N-terminus, UBA5 no longer retains the 1:2 ratio of ATP to UBA5, but rather this becomes a 1:1 ratio. Accordingly, the N-terminus significantly increases the affinity of ATP to UBA5. Finally, the N-terminus, although not directly involved in the E2 binding, stimulates transfer of UFM1 from UBA5 to the E2, UFC1.


Asunto(s)
Activación Enzimática/fisiología , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Humanos , Unión Proteica/fisiología , Dominios Proteicos/fisiología
5.
J Mol Biol ; 429(24): 3801-3813, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29111344

RESUMEN

The ability of ubiquitin to function in a wide range of cellular processes is ascribed to its capacity to cause a diverse spectrum of modifications. While a target protein can be modified with monoubiquitin, it can also be modified with ubiquitin chains. The latter include seven types of homotypic chains as well as mixed ubiquitin chains. In a mixed chain, not all the isopeptide bonds are restricted to a specific lysine of ubiquitin, resulting in a chain possessing more than one type of linkage. While structural characterization of homotypic chains has been well elucidated, less is known about mixed chains. Here we present the crystal structure of a mixed tri-ubiquitin chain at 3.1-Å resolution. In the structure, the proximal ubiquitin is connected to the middle ubiquitin via K48 and these two ubiquitins adopt a compact structure as observed in K48 di-ubiquitin. The middle ubiquitin links to the distal ubiquitin via its K63 and these ubiquitins adopt two conformations, suggesting a flexible structure. Using small-angle X-ray scattering, we unexpectedly found differences between the conformational ensembles of the above tri-ubiquitin chains and chains possessing the same linkages but in the reverse order. In addition, cleavage of the K48 linkage by DUB is faster if this linkage is at the distal end. Taken together, our results suggest that in mixed chains, not only the type of the linkages but also their sequence determine the structural and functional properties of the chain.


Asunto(s)
Lisina/química , Poliubiquitina/química , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Enzimas Desubicuitinizantes , Humanos , Lisina/metabolismo , Modelos Moleculares , Péptido Hidrolasas , Poliubiquitina/metabolismo , Conformación Proteica , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
6.
Sci Rep ; 7(1): 508, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28360427

RESUMEN

The modification of proteins by ubiquitin-fold modifier 1 (UFM1) is implicated in many human diseases. Prior to conjugation, UFM1 undergoes activation by its cognate activating enzyme, UBA5. UBA5 is a non-canonical E1 activating enzyme that possesses an adenylation domain but lacks a distinct cysteine domain. Binding of UBA5 to UFM1 is mediated via an amino acid sequence, known as the UFM1-interacting sequence (UIS), located outside the adenylation domain that is required for UFM1 activation. However, the precise boundaries of the UIS are yet not clear and are still under debate. Here we revisit the interaction of UFM1 with UBA5 by determining the crystal structure of UFM1 fused to 13 amino acids of human UBA5. Using binding and activity assays, we found that His 336 of UBA5, previously not reported to be part of the UIS, occupies a negatively charged pocket on UFM1's surface. This His is involved in UFM1 binding and if mutated perturbs activation of UFM1. Surprisingly, we also found that the interaction between two UFM1 molecules mimics how the UIS binds UFM1. Specifically, UFM1 His 70 resembles UBA5 His336 and enters a negatively charged pocked on the other UFM1 molecule. Our results refine our understanding of UFM1-UBA5 binding.


Asunto(s)
Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Cinética , Unión Proteica , Proteínas/química , Enzimas Activadoras de Ubiquitina/química
7.
Cell Rep ; 16(12): 3113-3120, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27653677

RESUMEN

Modification of proteins by ubiquitin or ubiquitin-like proteins (UBLs) is a critical cellular process implicated in a variety of cellular states and outcomes. A prerequisite for target protein modification by a UBL is the activation of the latter by activating enzymes (E1s). Here, we present the crystal structure of the non-canonical homodimeric E1, UBA5, in complex with its cognate UBL, UFM1, and supporting biochemical experiments. We find that UBA5 binds to UFM1 via a trans-binding mechanism in which UFM1 interacts with distinct sites in both subunits of the UBA5 dimer. This binding mechanism requires a region C-terminal to the adenylation domain that brings UFM1 to the active site of the adjacent UBA5 subunit. We also find that transfer of UFM1 from UBA5 to the E2, UFC1, occurs via a trans mechanism, thereby requiring a homodimer of UBA5. These findings explicitly elucidate the role of UBA5 dimerization in UFM1 activation.


Asunto(s)
Procesamiento Proteico-Postraduccional/fisiología , Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitinación/fisiología , Ubiquitinas/metabolismo , Humanos , Proteínas Ubiquitinadas/metabolismo
8.
J Biol Chem ; 291(4): 2033-2042, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26601948

RESUMEN

The deubiquitinating enzyme associated molecule with the SH3 domain of STAM (AMSH) is crucial for the removal of ubiquitin molecules during receptor-mediated endocytosis and lysosomal receptor sorting. AMSH interacts with signal transducing adapter molecule (STAM) 1 or 2, which enhances the activity of AMSH through an unknown mechanism. This stimulation is dependent on the ubiquitin-interacting motif of STAM. Here we investigate the specific mechanism of AMSH stimulation by STAM proteins and the role of the STAM Vps27/Hrs/STAM domain. We show that, in the presence of STAM, the length of the ubiquitin chains affects the apparent cleavage rate. Through measurement of the chain cleavage kinetics, we found that, although the kcat of Lys(63)-linked ubiquitin chain cleavage was comparable for di- and tri-ubiquitin, the Km value was lower for tri-ubiquitin. This increased affinity for longer chains was dependent on the Vps27/Hrs/STAM domain of STAM and required that the substrate ubiquitin chain contain homogenous Lys(63)-linkages. In addition, STAM directed AMSH cleavage toward the distal isopeptide bond in tri-ubiquitin chains. Finally, we generated a structural model of AMSH-STAM to show how the complex binds Lys(63)-linked ubiquitin chains and cleaves at the distal end. These data show how a deubiquitinating enzyme-interacting protein dictates the efficiency and specificity of substrate cleavage.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Humanos , Cinética , Fosfoproteínas/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Ubiquitina Tiolesterasa/genética
9.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 4): 458-64, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17372349

RESUMEN

The crystals obtained from various batches of crystallization trials of FabZ from Plasmodium falciparum exhibited non-isomorphism. The c axis of the I222 cell showed a large variation of about 16 A, from c = 81 A to c = 97 A. Complete data sets were collected for three crystal forms with varying lengths of the c axis (form 1, c = 97 A; form 2, c = 92 A; form 3, c = 81 A). The crystal structure of form 1 has been reported previously. Here, the crystal structures of the other two crystal forms are reported and a detailed structural comparison is made of the three crystal forms in order to explore the possible reasons for the existence of non-isomorphism. The conformations of three loops vary between the three crystal forms. The disposition of the loops affects the crystal packing and hence the unit-cell parameter. The crystallization condition and crystallization method employed, which change the evaporation rate, determine the crystal form of the enzyme. The present analysis shows that pH-induced intrinsic conformational changes in the protein play a key role in the observed differences.


Asunto(s)
Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Animales , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Conformación Proteica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...