Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 2724, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483144

RESUMEN

Proteolytical processing of the growth factor VEGFC through the concerted activity of CCBE1 and ADAMTS3 is required for lymphatic development to occur. How these factors act together in time and space, and which cell types produce these factors is not understood. Here we assess the function of Adamts3 and the related protease Adamts14 during zebrafish lymphangiogenesis and show both proteins to be able to process Vegfc. Only the simultaneous loss of both protein functions results in lymphatic defects identical to vegfc loss-of-function situations. Cell transplantation experiments demonstrate neuronal structures and/or fibroblasts to constitute cellular sources not only for both proteases but also for Ccbe1 and Vegfc. We further show that this locally restricted Vegfc maturation is needed to trigger normal lymphatic sprouting and directional migration. Our data provide a single-cell resolution model for establishing secretion and processing hubs for Vegfc during developmental lymphangiogenesis.


Asunto(s)
Fibroblastos/metabolismo , Linfangiogénesis/genética , Neuronas/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Vasos Linfáticos/embriología , Vasos Linfáticos/metabolismo , Microscopía Confocal , Procolágeno N-Endopeptidasa/genética , Procolágeno N-Endopeptidasa/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
2.
EMBO Rep ; 20(5)2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30877134

RESUMEN

Lymphatic vessels are known to be derived from veins; however, recent lineage-tracing experiments propose that specific lymphatic networks may originate from both venous and non-venous sources. Despite this, direct evidence of a non-venous lymphatic progenitor is missing. Here, we show that the zebrafish facial lymphatic network is derived from three distinct progenitor populations that add sequentially to the developing facial lymphatic through a relay-like mechanism. We show that while two facial lymphatic progenitor populations are venous in origin, the third population, termed the ventral aorta lymphangioblast (VA-L), does not sprout from a vessel; instead, it arises from a migratory angioblast cell near the ventral aorta that initially lacks both venous and lymphatic markers, and contributes to the facial lymphatics and the hypobranchial artery. We propose that sequential addition of venous and non-venous progenitors allows the facial lymphatics to form in an area that is relatively devoid of veins. Overall, this study provides conclusive, live imaging-based evidence of a non-venous lymphatic progenitor and demonstrates that the origin and development of lymphatic vessels is context-dependent.


Asunto(s)
Vasos Linfáticos/fisiología , Células Madre/fisiología , Venas/fisiología , Pez Cebra/fisiología , Animales , Movimiento Celular/fisiología , Células Endoteliales/fisiología
3.
Circ Res ; 120(8): 1263-1275, 2017 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-28179432

RESUMEN

RATIONALE: Lymphatic vessel formation and function constitutes a physiologically and pathophysiologically important process, but its genetic control is not well understood. OBJECTIVE: Here, we identify the secreted Polydom/Svep1 protein as essential for the formation of the lymphatic vasculature. We analyzed mutants in mice and zebrafish to gain insight into the role of Polydom/Svep1 in the lymphangiogenic process. METHODS AND RESULTS: Phenotypic analysis of zebrafish polydom/svep1 mutants showed a decrease in venous and lymphovenous sprouting, which leads to an increased number of intersegmental arteries. A reduced number of primordial lymphatic cells populated the horizontal myoseptum region but failed to migrate dorsally or ventrally, resulting in severe reduction of the lymphatic trunk vasculature. Corresponding mutants in the mouse Polydom/Svep1 gene showed normal egression of Prox-1+ cells from the cardinal vein at E10.5, but at E12.5, the tight association between the cardinal vein and lymphatic endothelial cells at the first lymphovenous contact site was abnormal. Furthermore, mesenteric lymphatic structures at E18.5 failed to undergo remodeling events in mutants and lacked lymphatic valves. In both fish and mouse embryos, the expression of the gene suggests a nonendothelial and noncell autonomous mechanism. CONCLUSIONS: Our data identify zebrafish and mouse Polydom/Svep1 as essential extracellular factors for lymphangiogenesis. Expression of the respective genes by mesenchymal cells in intimate proximity with venous and lymphatic endothelial cells is required for sprouting and migratory events in zebrafish and for remodeling events of the lymphatic intraluminal valves in mouse embryos.


Asunto(s)
Células Endoteliales/metabolismo , Evolución Molecular , Linfangiogénesis , Vasos Linfáticos/metabolismo , Proteínas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular , Comunicación Celular , Movimiento Celular , Células Endoteliales/patología , Endotelio Linfático/anomalías , Endotelio Linfático/metabolismo , Endotelio Linfático/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Genotipo , Vasos Linfáticos/anomalías , Vasos Linfáticos/fisiopatología , Mesodermo/metabolismo , Mutación , Fenotipo , Proteínas/genética , Transducción de Señal , Factores de Tiempo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Circ Res ; 116(10): 1660-9, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25814692

RESUMEN

RATIONALE: Collagen- and calcium-binding EGF domain-containing protein 1 (CCBE1) is essential for lymphangiogenesis in vertebrates and has been associated with Hennekam syndrome. Recently, CCBE1 has emerged as a crucial regulator of vascular endothelial growth factor-C (VEGFC) signaling. OBJECTIVE: CCBE1 is a secreted protein characterized by 2 EGF domains and 2 collagen repeats. The functional role of the different CCBE1 protein domains is completely unknown. Here, we analyzed the functional role of the different CCBE1 domains in vivo and in vitro. METHODS AND RESULTS: We analyzed the functionality of several CCBE1 deletion mutants by generating knock-in mice expressing these mutants, by analyzing their ability to enhance Vegfc signaling in vivo in zebrafish, and by testing their ability to induce VEGFC processing in vitro. We found that deleting the collagen domains of CCBE1 has a much stronger effect on CCBE1 activity than deleting the EGF domains. First, although CCBE1ΔCollagen mice fully phenocopy CCBE1 knock-out mice, CCBE1ΔEGF knock-in embryos still form rudimentary lymphatics. Second, Ccbe1ΔEGF, but not Ccbe1ΔCollagen, could partially substitute for Ccbe1 to enhance Vegfc signaling in zebrafish. Third, CCBE1ΔEGF, similarly to CCBE1, but not CCBE1ΔCollagen could activate VEGFC processing in vitro. Furthermore, a Hennekam syndrome mutation within the collagen domain has a stronger effect than a Hennekam syndrome mutation within the EGF domain. CONCLUSIONS: We propose that the collagen domains of CCBE1 are crucial for the activation of VEGFC in vitro and in vivo. The EGF domains of CCBE1 are dispensable for regulation of VEGFC processing in vitro, however, they are necessary for full lymphangiogenic activity of CCBE1 in vivo.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Células Endoteliales/metabolismo , Vasos Linfáticos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Colágeno/metabolismo , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Enfermedades de los Genitales Masculinos/genética , Enfermedades de los Genitales Masculinos/metabolismo , Genotipo , Edad Gestacional , Células HEK293 , Humanos , Linfangiectasia Intestinal/genética , Linfangiectasia Intestinal/metabolismo , Vasos Linfáticos/embriología , Linfedema/genética , Linfedema/metabolismo , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Transfección , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...