Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 26(12): 108408, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38058301

RESUMEN

Canonical pyroptosis is type of programmed cell death depending on active caspase-1, and the inflammasome carries out caspase-1 activation. Here, we showed that docosahexaenoic acid (DHA) induced ovarian cancer cell deaths in caspase-1-dependent manner. DHA increased caspase-1 activity and led to interleukin-1ß secretion and gasdermin D cleavage while disulfiram inhibited DHA-induced cell death, suggesting that DHA triggered pyroptosis. Intriguingly, ASC, the molecule recruiting caspase-1 to inflammasome for activation, was dispensable for DHA-induced pyroptosis. Instead, we observed remarkable elevation in caspase-1 abundance concurrent with the activation of caspase-1 in DHA-treated cells. As ectopically overexpressing caspase-1 resulted in robust amount of active caspase-1, we reason that DHA activates caspase-1 and pyroptosis through the generation of excessive amount of caspase-1 protein. Mechanistically, DHA increased caspase-1 by specifically accelerating caspase-1 protein synthesis via the p38MAPK/Mnk1 signaling pathway. We have uncovered an unknown pyroptosis mechanism in which caspase-1-dependent pyroptosis can occur without the participation of ASC/inflammasome.

2.
NPJ Breast Cancer ; 7(1): 91, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244488

RESUMEN

Triple negative breast cancer (TNBC) cells are generally more invasive than estrogen receptor-positive (ER + ) breast cancer cells. Consistent with the importance of activator protein 1 (AP1) transcription factors in invasion, AP1 activity is much higher in TNBC lines than ER + lines. In TNBC cells, robust AP1 activity is facilitated by both ERK and p38MAPK signaling pathways. While ERK signaling pathway regulates AP1 activity by controlling the abundance of AP1 transcription factors, p38MAPK signaling pathway does it by enhancing AP1 binding to AP1 sites without altering their abundance. Here, we show that p38MAPK regulation of AP1 activity involves both MAPKAPK2 (MK2) and JAB1, a known JUN-binding protein. MK2 not only interacts with JAB1 but also directly phosphorylates JAB1 at Ser177 in TNBC cells. Interestingly, Ser177 phosphorylation does not affect JAB1 and JUN interaction. Instead, interfering with p38MAPK signaling pathway or introducing an S to A point mutation at Ser177 of JAB1 reduces JUN recruitment to the AP1 sites in cyclin D1, urokinase plasminogen activator (uPA) and uPA receptor promoters. Moreover, knockdown of JAB1 diminishes >60% of AP1 transcriptional activity in TNBC cells. Taken together, these results indicate that MK2-mediated phosphorylation of JAB1 facilitates JUN recruitment to AP1 sites, thus augmenting AP1 activity. In line with the role of JAB1 in AP1 activity, silencing JAB1 leads to dramatic reduction in TNBC cell growth, in vitro invasion and in vivo tumor outgrowth. This study suggests that the p38MAPK-MK2 signaling pathway promotes TNBC tumorigenesis by sustaining robust AP1 activity.

3.
Signal Transduct Target Ther ; 5(1): 140, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32820156

RESUMEN

PRKCI, the gene for protein kinase Cι (PKCι), is frequently amplified in ovarian cancer and recent studies have shown that PKCι participates in ovary tumorigenesis. However, it is unknown whether PKCι is differentially involved in the growth/survival between PRKCI-amplified and non-amplified ovarian cancer cells. In this study, we analyzed ovarian cancer patient dataset and revealed that PRKCI is the only PKC family member significantly amplified in ovarian cancer and PRKCI amplification is associated with higher PKCι expression. Using a panel of ovarian cancer cell lines, we found that abundance of PKCι is generally associated with PRKCI amplification. Interestingly, silencing PKCι led to apoptosis in PRKCI-amplified ovarian cancer cells but not in those without PRKCI amplification, thus indicating an oncogenic addiction to PKCɩ in PRKCI-amplified cells. Since small-molecule inhibitors characterized to selectively block atypical PKCs did not offer selectivity nor sensitivity in PRKCI-amplified ovarian cancer cells and were even cytotoxic to non-cancerous ovary surface or fallopian tube epithelial cells, we designed an EpCAM aptamer-PKCι siRNA chimera (EpCAM-siPKCι aptamer). EpCAM-siPKCι aptamer not only effectively induced apoptosis of PRKCI-amplified ovarian cancer cells but also greatly deterred intraperitoneal tumor development in xenograft mouse model. This study has demonstrated a precision medicine-based strategy to target a subset of ovarian cancer that contains PRKCI amplification and shown that the EpCAM aptamer-delivered PKCι siRNA may be used to suppress such tumors.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Amplificación de Genes , Isoenzimas , Proteínas de Neoplasias , Neoplasias Ováricas , Proteína Quinasa C , Animales , Femenino , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Ratones Desnudos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/genética , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Exp Clin Cancer Res ; 37(1): 243, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30285892

RESUMEN

BACKGROUND: Licorice is an herb extensively used for both culinary and medicinal purposes. Various constituents of licorice have been shown to exhibit anti-tumorigenic effect in diverse cancer types. However, majority of these studies focus on the aspect of their growth-suppressive role. In this study, we systematically analyzed known licorice's constituents on the goal of identifying component(s) that can effectively suppress both cell migration and growth. METHODS: Effect of licorice's constituents on cell growth was evaluated by MTT assay while cell migration was assessed by both wound-healing and Transwell assays. Cytoskeleton reorganization and focal adhesion assembly were visualized by immunofluorescence staining with labeled phalloidin and anti-paxillin antibody. Activity of Src in cells was judged by western blot using phosphor-Src416 antibody while Src kinase activity was measured using Promega Src kinase assay system. Anti-tumorigenic capabilities of isoliquiritigenin (ISL) and 2, 4, 2', 4'-Tetrahydroxychalcone (THC) were investigated using lung cancer xenograft model. RESULTS: Using a panel of lung cancer cell lines, ISL was identified as the only licorice's constituent capable of inhibiting both cell migration and growth. ISL-led inhibition in cell migration resulted from impaired cytoskeleton reorganization and focal adhesion assembly. Assessing the phosphorylation of 141 cytoskeleton dynamics-associated proteins revealed that ISL reduced the abundance of Tyr421-phosphorylation of cortactin, Tyr925- and Tyr861-phosphorylation of FAK, indicating the involvement of Src because these sites are known to be phosphorylated by Src. Enigmatically, ISL inhibited Src in cells while displayed no effect on Src activity in cell-free system. The discrepancy was explained by the observation that THC, one of the major ISL metabolite identified in lung cancer cells abrogated Src activity both in cells and cell-free system. Similar to ISL, THC deterred cell migration and abolished cytoskeleton reorganization/focal adhesion assembly. Furthermore, we showed both ISL and THC suppressed in vitro lung cancer cell invasion and in vivo tumor progression. CONCLUSION: Our study suggests that ISL inhibits lung cancer cell migration and tumorigenesis by interfering with Src through its metabolite THC. As licorice is safely used for culinary purposes, our study suggests that ISL or THC may be safely used as a Src inhibitor.


Asunto(s)
Chalconas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Actinas/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Progresión de la Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacología , Adhesiones Focales/efectos de los fármacos , Glycyrrhiza/química , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Extractos Vegetales/farmacología , Distribución Aleatoria , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/metabolismo
5.
Nat Commun ; 6: 6910, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25908435

RESUMEN

Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumours, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumours and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas con Homeodominio LIM/genética , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Experimentales/genética , Células Madre Neoplásicas/metabolismo , Factores de Transcripción/genética , Animales , Western Blotting , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Regulación hacia Abajo , Femenino , Humanos , Proteínas con Homeodominio LIM/metabolismo , Células MCF-7 , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Microscopía Fluorescente , Células Madre Neoplásicas/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
6.
Immunity ; 40(1): 128-39, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24412617

RESUMEN

Commensal gut microflora and dietary fiber protect against colonic inflammation and colon cancer through unknown targets. Butyrate, a bacterial product from fermentation of dietary fiber in the colon, has been implicated in this process. GPR109A (encoded by Niacr1) is a receptor for butyrate in the colon. GPR109A is also a receptor for niacin, which is also produced by gut microbiota and suppresses intestinal inflammation. Here we showed that Gpr109a signaling promoted anti-inflammatory properties in colonic macrophages and dendritic cells and enabled them to induce differentiation of Treg cells and IL-10-producing T cells. Moreover, Gpr109a was essential for butyrate-mediated induction of IL-18 in colonic epithelium. Consequently, Niacr1(-/-) mice were susceptible to development of colonic inflammation and colon cancer. Niacin, a pharmacological Gpr109a agonist, suppressed colitis and colon cancer in a Gpr109a-dependent manner. Thus, Gpr10a has an essential role in mediating the beneficial effects of gut microbiota and dietary fiber in colon.


Asunto(s)
Carcinogénesis/inmunología , Colitis/inmunología , Colon/inmunología , Neoplasias del Colon/prevención & control , Células Epiteliales/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Butiratos/inmunología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Colitis/complicaciones , Colitis/tratamiento farmacológico , Colon/microbiología , Colon/patología , Neoplasias del Colon/etiología , Células Dendríticas/inmunología , Susceptibilidad a Enfermedades , Células Epiteliales/efectos de los fármacos , Interleucina-10/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Activación de Linfocitos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota , Niacina/administración & dosificación , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Receptores Nicotínicos/genética , Receptores Nicotínicos/inmunología , Transducción de Señal/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología
7.
Cancer Res ; 74(4): 1166-78, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24371223

RESUMEN

GPR109A, a G-protein-coupled receptor, is activated by niacin and butyrate. Upon activation in colonocytes, GPR109A potentiates anti-inflammatory pathways, induces apoptosis, and protects against inflammation-induced colon cancer. In contrast, GPR109A activation in keratinocytes induces flushing by activation of Cox-2-dependent inflammatory signaling, and the receptor expression is upregulated in human epidermoid carcinoma. Thus, depending on the cellular context and tissue, GPR109A functions either as a tumor suppressor or a tumor promoter. However, the expression status and the functional implications of this receptor in the mammary epithelium are not known. Here, we show that GPR109A is expressed in normal mammary tissue and, irrespective of the hormone receptor status, its expression is silenced in human primary breast tumor tissues, breast cancer cell lines, and in tumor tissues of three different murine mammary tumor models. Functional expression of this receptor in human breast cancer cell lines decreases cyclic AMP production, induces apoptosis, and blocks colony formation and mammary tumor growth. Transcriptome analysis revealed that GPR109A activation inhibits genes, which are involved in cell survival and antiapoptotic signaling, in human breast cancer cells. In addition, deletion of Gpr109a in mice increased tumor incidence and triggered early onset of mammary tumorigenesis with increased lung metastasis in MMTV-Neu mouse model of spontaneous breast cancer. These findings suggest that GPR109A is a tumor suppressor in mammary gland and that pharmacologic induction of this gene in tumor tissues followed by its activation with agonists could be an effective therapeutic strategy to treat breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Genes Supresores de Tumor/fisiología , Receptores Acoplados a Proteínas G/fisiología , Receptores Nicotínicos/fisiología , Animales , Butiratos/metabolismo , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Células Cultivadas , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Niacina/metabolismo
8.
Neoplasia ; 15(9): 1075-85, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24027432

RESUMEN

High abundance of c-Jun is detected in invasive breast cancer cells and aggressive breast tumor malignancies. Here, we demonstrate that a major cause of high c-Jun abundance in invasive breast cancer cells is prolonged c-Jun protein stability owing to poor poly-ubiquitination of c-Jun. Among the known c-Jun-targeting E3 ligases, we identified constitutive photomorphogenesis protein 1 (COP1) as an E3 ligase responsible for c-Jun degradation in less invasive breast cancer cells because depletion of COP1 reduced c-Jun poly-ubiquitination leading to the stabilization of c-Jun protein. In a panel of breast cancer cell lines, we observed an inverse association between the levels of COP1 and c-Jun. However, overexpressing COP1 alone was unable to decrease c-Jun level in invasive breast cancer cells, indicating that efficient c-Jun protein degradation necessitates an additional event. Indeed, we found that glycogen synthase kinase 3 (GSK3) inhibitors elevated c-Jun abundance in less invasive breast cancer cells and that GSK3ß nonphosphorylable c-Jun-T239A mutant displayed greater protein stability and poorer poly-ubiquitination compared to the wild-type c-Jun. The ability of simultaneously enforced expression of COP1 and constitutively active GSK3ß to decrease c-Jun abundance in invasive breast cancer cells allowed us to conclude that c-Jun is negatively regulated through the coordinated action of COP1 and GSK3ß. Importantly, co-expressing COP1 and active GSK3ß blocked in vitro cell growth/migration and in vivo metastasis of invasive breast cancer cells. Gene expression profiling of breast tumor specimens further revealed that higher COP1 expression correlated with better recurrence-free survival. Our study supports the notion that COP1 is a suppressor of breast cancer progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Femenino , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Interferencia de ARN , ARN Interferente Pequeño , Ubiquitina-Proteína Ligasas/biosíntesis , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Pez Cebra
9.
Mol Cell Biol ; 33(19): 3920-35, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23918800

RESUMEN

SLC5A8 is a putative tumor suppressor that is inactivated in more than 10 different types of cancer, but neither the oncogenic signaling responsible for SLC5A8 inactivation nor the functional relevance of SLC5A8 loss to tumor growth has been elucidated. Here, we identify oncogenic HRAS (HRAS(G12V)) as a potent mediator of SLC5A8 silencing in human nontransformed normal mammary epithelial cell lines and in mouse mammary tumors through DNMT1. Further, we demonstrate that loss of Slc5a8 increases cancer-initiating stem cell formation and promotes mammary tumorigenesis and lung metastasis in an HRAS-driven murine model of mammary tumors. Mammary-gland-specific overexpression of Slc5a8 (mouse mammary tumor virus-Slc5a8 transgenic mice), as well as induction of endogenous Slc5a8 in mice with inhibitors of DNA methylation, protects against HRAS-driven mammary tumors. Collectively, our results provide the tumor-suppressive role of SLC5A8 and identify the oncogenic HRAS as a mediator of tumor-associated silencing of this tumor suppressor in mammary glands. These findings suggest that pharmacological approaches to reactivate SLC5A8 expression in tumor cells have potential as a novel therapeutic strategy for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Transporte de Catión/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Línea Celular , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Femenino , Células HCT116 , Humanos , Immunoblotting , Células MCF-7 , Masculino , Ratones , Ratones Noqueados , Ratones Desnudos , Ratones Transgénicos , Transportadores de Ácidos Monocarboxílicos , Mutación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trasplante Heterólogo
10.
Sci Signal ; 6(266): ra16, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23482664

RESUMEN

The importance of microRNAs (miRNAs) in biological and disease processes necessitates a better understanding of the mechanisms that regulate miRNA abundance. We showed that the activities of the mitogen-activated protein kinase (MAPK) p38 and its downstream effector kinase MAPK-activated protein kinase 2 (MK2) were necessary for the efficient processing of a subset of primary miRNAs (pri-miRNAs). Through yeast two-hybrid screening, we identified p68 (also known as DDX5), a key component of the Drosha complex that processes pri-miRNAs, as an MK2-interacting protein, and we found that MK2 phosphorylated p68 at Ser(197) in cells. In wild-type mouse embryonic fibroblasts (MEFs) treated with a p38 inhibitor or in MK2-deficient (MK2(-/-)) MEFs, expression of a phosphomimetic mutant p68 fully restored pri-miRNA processing, suggesting that MK2-mediated phosphorylation of p68 was essential for this process. We found that, whereas p68 was present in the nuclei of wild-type MEFs, it was found mostly in the cytoplasm of MK2(-/-) MEFs. Nuclear localization of p68 depended on MK2-mediated phosphorylation of Ser(197). In addition, inhibition of p38 MAPK promoted the growth of wild-type MEFs and breast cancer MCF7 cells by enhancing the abundance of c-Myc through suppression of the biogenesis of the miRNA miR-145, which targets c-Myc. Because pri-miRNA processing occurs in the nucleus, our findings suggest that the p38 MAPK-MK2 signaling pathway promotes miRNA biogenesis by facilitating the nuclear localization of p68.


Asunto(s)
Núcleo Celular/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , MicroARNs/metabolismo , Fosforilación , Procesamiento Postranscripcional del ARN , Especificidad por Sustrato
11.
Cancer Res ; 69(24): 9228-35, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19920183

RESUMEN

Cell migration is a critical step in cancer cell invasion. Recent studies have implicated the importance of the extracellular signal-regulated kinase (ERK) signaling pathway in cancer cell migration. However, the mechanism associated with ERK-regulated cell migration is poorly understood. Using a panel of breast cancer cell lines, we detected an excellent correlation between ERK activity and cell migration. Interestingly, we noticed that a 48-hour treatment with U0126 [specific mitogen-activated protein/ERK kinase (MEK)-1/2 inhibitor] was needed to significantly inhibit breast cancer cell migration, whereas this inhibitor blocked ERK activity within 1 hour. This observation suggests that ERK-dependent gene expression, rather than direct ERK signaling, is essential for cell migration. With further study, we found that ERK activity promoted the expression of the activator protein-1 (AP1) components Fra-1 and c-Jun, both of which were necessary for cell migration. Combination of U0126 treatment and Fra-1/c-Jun knockdown did not yield further reduction in cell migration than either alone, indicating that ERKs and Fra-1/c-Jun act by the same mechanism to facilitate cell migration. In an attempt to investigate the role of Fra-1/c-Jun in cell migration, we found that the ERK-Fra-1/c-Jun axis regulated slug expression in an AP1-dependent manner. Moreover, the occurrence of U0126-induced migratory inhibition coincided with slug reduction, and silencing slug expression abrogated breast cancer cell migration. These results suggest an association between ERK-regulated cell migration and slug expression. Indeed, cell migration was not significantly inhibited by U0126 treatment or Fra-1/c-Jun silencing in cells expressing slug transgene. Our study suggests that the ERK pathway regulates breast cancer cell migration by maintaining slug expression.


Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Movimiento Celular/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Factores de Transcripción/biosíntesis , Animales , Neoplasias de la Mama/genética , Butadienos/farmacología , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Ratones , Invasividad Neoplásica , Nitrilos/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/biosíntesis , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN Interferente Pequeño/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...