Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
bioRxiv ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609196

RESUMEN

The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.

2.
Mol Neurobiol ; 60(11): 6362-6372, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37450245

RESUMEN

Autosomal dominant leukodystrophy (ADLD) is an ultra-rare, slowly progressive, and fatal neurodegenerative disorder associated with the loss of white matter in the central nervous system (CNS). Several years after its first clinical description, ADLD was found to be caused by coding and non-coding variants in the LMNB1 gene that cause its overexpression in at least the brain of patients. LMNB1 encodes for Lamin B1, a protein of the nuclear lamina. Lamin B1 regulates many cellular processes such as DNA replication, chromatin organization, and senescence. However, its functions have not been fully characterized yet. Nevertheless, Lamin B1 together with the other lamins that constitute the nuclear lamina has firstly the key role of maintaining the nuclear structure. Being the nucleus a dynamic system subject to both biochemical and mechanical regulation, it is conceivable that changes to its structural homeostasis might translate into functional alterations. Under this light, this review aims at describing the pieces of evidence that to date have been obtained regarding the effects of LMNB1 overexpression on cellular morphology and functionality. Moreover, we suggest that further investigation on ADLD morpho-functional consequences is essential to better understand this complex disease and, possibly, other neurological disorders affecting CNS myelination.


Asunto(s)
Enfermedades Desmielinizantes , Enfermedades por Almacenamiento Lisosomal , Enfermedades Neurodegenerativas , Humanos , Enfermedades Raras , Enfermedades Desmielinizantes/metabolismo , Encéfalo/metabolismo , Modelos Teóricos
3.
Ann Indian Acad Neurol ; 24(3): 413-416, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447008

RESUMEN

Autosomal dominant leukodystrophy is an adult onset neurodegenerative disorder presenting with progressive symptoms of ataxia and autonomic dysfunction in fourth or fifth decade in life. It has clinical similarity with multiple sclerosis, but shows characteristic magnetic resonance imaging findings of diffuse bilaterally symmetrical leukodystrophy which can distinguish this disorder. It is a rare disorder with no known treatment till date, and has never been described from the Indian subcontinent. We present an Indian family with autosomal dominant adult-onset demyelinating leukodystrophy with multiple members affected over four generations, and demonstrate a cheap and accurate molecular method of real-time polymerase chain reaction to detect the LMNB1 gene duplication, which is the genetic basis of this devastating disorder.

4.
Mol Genet Genomic Med ; 9(4): e1647, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33666368

RESUMEN

BACKGROUND: Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by early-onset non-progressive involuntary movements. Although NKX2-1 mutations or deletions are the cause of BHC, some BHC families do not have pathogenic alterations in the NKX2-1 gene, indicating that mutations of non-coding regulatory elements of NKX2-1 may also play a role. METHODS AND RESULTS: By using whole-genome microarray analysis, we identified a 117 Kb founder deletion in three apparently unrelated BHC families that were negative for NKX2-1 sequence variants. Targeted next generation sequencing analysis confirmed the deletion and showed that it was part of a complex local genomic rearrangement. In addition, we also detected a 648 Kb de novo deletion in an isolated BHC case. Both deletions are located downstream from NKX2-1 on chromosome 14q13.2-q13.3 and share a 33 Kb smallest region of overlap with six previously reported cases. This region has no gene but contains multiple evolutionarily highly conserved non-coding sequences. CONCLUSION: We propose that the deletion of potential regulatory elements necessary for NKX2-1 expression in this critical region is responsible for BHC phenotype in these patients, and this is a novel disease-causing mechanism for BHC.


Asunto(s)
Corea/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factor Nuclear Tiroideo 1/genética , Adolescente , Niño , Corea/patología , Cromosomas Humanos Par 14/genética , Secuencia Conservada , Femenino , Humanos , Masculino , Linaje , Eliminación de Secuencia
5.
Neurology ; 95(21): e2866-e2879, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-32913013

RESUMEN

OBJECTIVE: To define the risks and consequences of cardiac abnormalities in ATP1A3-related syndromes. METHODS: Patients meeting clinical diagnostic criteria for rapid-onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS) with ATP1A3 genetic analysis and at least 1 cardiac assessment were included. We evaluated the cardiac phenotype in an Atp1a3 knock-in mouse (Mashl+/-) to determine the sequence of events in seizure-related cardiac death. RESULTS: Ninety-eight patients with AHC, 9 with RDP, and 3 with CAPOS (63 female, mean age 17 years) were included. Resting ECG abnormalities were found in 52 of 87 (60%) with AHC, 2 of 3 (67%) with CAPOS, and 6 of 9 (67%) with RDP. Serial ECGs showed dynamic changes in 10 of 18 patients with AHC. The first Holter ECG was abnormal in 24 of 65 (37%) cases with AHC and RDP with either repolarization or conduction abnormalities. Echocardiography was normal. Cardiac intervention was required in 3 of 98 (≈3%) patients with AHC. In the mouse model, resting ECGs showed intracardiac conduction delay; during induced seizures, heart block or complete sinus arrest led to death. CONCLUSIONS: We found increased prevalence of ECG dynamic abnormalities in all ATP1A3-related syndromes, with a risk of life-threatening cardiac rhythm abnormalities equivalent to that in established cardiac channelopathies (≈3%). Sudden cardiac death due to conduction abnormality emerged as a seizure-related outcome in murine Atp1a3-related disease. ATP1A3-related syndromes are cardiac diseases and neurologic diseases. We provide guidance to identify patients potentially at higher risk of sudden cardiac death who may benefit from insertion of a pacemaker or implantable cardioverter-defibrillator.


Asunto(s)
Ataxia Cerebelosa/genética , Deformidades Congénitas del Pie/genética , Pérdida Auditiva Sensorineural/genética , Hemiplejía/genética , Mutación/genética , Atrofia Óptica/genética , Reflejo Anormal/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Adolescente , Adulto , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/terapia , Niño , Preescolar , Estudios de Cohortes , Femenino , Deformidades Congénitas del Pie/metabolismo , Deformidades Congénitas del Pie/terapia , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/terapia , Hemiplejía/diagnóstico , Hemiplejía/terapia , Humanos , Lactante , Masculino , Persona de Mediana Edad , Atrofia Óptica/metabolismo , Atrofia Óptica/terapia , Fenotipo , Convulsiones/terapia , Adulto Joven
6.
SLAS Discov ; 25(8): 939-949, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32349647

RESUMEN

Autosomal dominant leukodystrophy (ADLD) is a fatal, progressive adult-onset disease characterized by widespread central nervous system (CNS) demyelination and significant morbidity. The late age of onset together with the relatively slow disease progression provides a large therapeutic window for the disorder. However, no treatment exists for ADLD, representing an urgent and unmet clinical need. We have previously shown that ADLD is caused by duplications of the lamin B1 gene causing increased expression of the lamin B1 protein, a major constituent of the nuclear lamina, and demonstrated that transgenic mice with oligodendrocyte-specific overexpression of lamin B1 exhibit temporal and histopathological features reminiscent of the human disease. As increased levels of lamin B1 are the causative event triggering ADLD, approaches aimed at reducing lamin B1 levels and associated functional consequences represent a promising strategy for discovery of small-molecule ADLD therapeutics. To this end, we have created an inducible cell culture model of lamin B1 overexpression and developed high-content analysis in connection with multivariate analysis to define, analyze, and quantify lamin B1 expression and its associated abnormal nuclear phenotype in mouse embryonic fibroblasts (MEFs). The assay has been optimized to meet high-throughput screening (HTS) criteria in multiday variability studies. To control for batch-to-batch variation in the primary MEFs, we have implemented a screening strategy that employs sentinel cells to avoid costly losses during HTS. We posit the assay will identify bona fide suppressors of lamin B1 pathophysiology as candidates for development into potential therapies for ADLD.


Asunto(s)
Enfermedades Desmielinizantes/tratamiento farmacológico , Lamina Tipo B/genética , Enfermedad de Pelizaeus-Merzbacher/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Adulto , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Fibroblastos/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Ratones , Enfermedad de Pelizaeus-Merzbacher/genética , Enfermedad de Pelizaeus-Merzbacher/patología , Fenotipo , Cultivo Primario de Células , Bibliotecas de Moléculas Pequeñas/química
7.
Front Cell Dev Biol ; 7: 41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949481

RESUMEN

The nuclear lamina is a fibrous meshwork of proteins found adjacent to the inner nuclear membrane that plays a critical role in the maintenance of nuclear architecture. Made up of A and B type lamins, the nuclear lamina has recently been shown to contribute to numerous cellular functions such as chromatin organization, DNA replication, cellular proliferation, senescence, and aging. While at least a dozen disorders are associated with LMNA, the focus of this review is Autosomal Dominant Leukodystrophy (ADLD), the only disease associated with the lamin B1 gene (LMNB1). ADLD is a fatal, adult onset CNS demyelinating disorder that is caused by either genomic duplications involving LMNB1 or deletions upstream of the gene. Both mutation types result in increased LMNB1 gene expression. How the increased levels of this widely expressed nuclear structural component results a phenotype as specific as demyelination is a great mystery. This review summarizes what is currently known about the disease and describes recent work using animal and cell culture models that have provided critical insights into ADLD pathological mechanisms. The delineation of these pathways provides a fascinating glimpse into entirely novel roles for the nuclear lamina and will be critical for the identification of therapies for this fatal disease.

8.
Neurol Genet ; 5(1): e305, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30842973

RESUMEN

OBJECTIVE: Clinical, radiologic, and molecular analysis of patients with genomic deletions upstream of the LMNB1 gene. METHODS: Detailed neurologic, MRI examinations, custom array comparative genomic hybridization (aCGH) analysis, and expression analysis were performed in patients at different clinical centers. All procedures were approved by institutional review boards of the respective institutions. RESULTS: Five patients from 3 independent families presented at ages ranging from 32 to 52 years with neurologic symptoms that included progressive hypophonia, upper and lower limb weakness and spasticity, and cerebellar dysfunction and MRIs characterized by widespread white matter alterations. Patients had unique nonrecurrent deletions upstream of the LMNB1, varying in size from 250 kb to 670 kb. Deletion junctions were embedded in repetitive elements. Expression analysis revealed increased LMNB1 expression in patient cells. CONCLUSIONS: Our findings confirmed the association between LMNB1 upstream deletions and leukodystrophy previously reported in a single family, expanding the phenotypic and molecular description of this condition. Although clinical and radiologic features overlapped with those of autosomal dominant leukodystrophy because of LMNB1 duplications, patients with deletions upstream of LMNB1 had an earlier age at symptom onset, lacked early dysautonomia, and appeared to have lesser involvement of the cerebellum and sparing of the spinal cord diameter on MRI. aCGH analysis defined a smaller minimal critical region required for disease causation and revealed that deletions occur at repetitive DNA genomic elements. Search for LMNB1 structural variants (duplications and upstream deletions) should be an integral part of the investigation of patients with autosomal dominant adult-onset leukodystrophy.

9.
Proc Natl Acad Sci U S A ; 116(10): 4307-4315, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30765529

RESUMEN

The nuclear lamina is an intermediate filament meshwork adjacent to the inner nuclear membrane (INM) that plays a critical role in maintaining nuclear shape and regulating gene expression through chromatin interactions. Studies have demonstrated that A- and B-type lamins, the filamentous proteins that make up the nuclear lamina, form independent but interacting networks. However, whether these lamin subtypes exhibit a distinct spatial organization or whether their organization has any functional consequences is unknown. Using stochastic optical reconstruction microscopy (STORM) our studies reveal that lamin B1 and lamin A/C form concentric but overlapping networks, with lamin B1 forming the outer concentric ring located adjacent to the INM. The more peripheral localization of lamin B1 is mediated by its carboxyl-terminal farnesyl group. Lamin B1 localization is also curvature- and strain-dependent, while the localization of lamin A/C is not. We also show that lamin B1's outer-facing localization stabilizes nuclear shape by restraining outward protrusions of the lamin A/C network. These two findings, that lamin B1 forms an outer concentric ring and that its localization is energy-dependent, are significant as they suggest a distinct model for the nuclear lamina-one that is able to predict its behavior and clarifies the distinct roles of individual nuclear lamin proteins and the consequences of their perturbation.


Asunto(s)
Lamina Tipo A , Lamina Tipo B , Lámina Nuclear , Humanos , Núcleo Celular/metabolismo , Células HeLa , Lamina Tipo A/química , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/química , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Microscopía , Membrana Nuclear/metabolismo , Lámina Nuclear/metabolismo
10.
Nucleus ; 7(6): 547-553, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27854160

RESUMEN

Autosomal Dominant Leukodystrophy (ADLD), a fatal adult onset demyelinating disorder, is the only human disease that has been linked to mutations of the nuclear lamina protein, lamin B1, and is primarily caused by duplications of the LMNB1 gene. Why CNS myelin is specifically targeted and the mechanisms underlying ADLD are unclear. Recent work from our group has demonstrated that over expression of lamin B1 in oligodendrocytes, the myelin producing cells in the CNS, resulted in age dependent epigenetic modifications, transcriptional down-regulation of lipogenic gene expression and significant reductions of myelin-enriched lipids. Given the high lipid content of meylin, we hypothesize that lipid loss is one of the primary drivers of the demyelination phenotype. These results can, at least partially, explain the age dependence and cell type specificity in ADLD and are discussed in the context of the existing literature, in an attempt to delineate potential pathways underlying the disease phenotype.


Asunto(s)
Lamina Tipo B/metabolismo , Metabolismo de los Lípidos , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Animales , Epigénesis Genética , Humanos , Lamina Tipo B/genética , Mutación , Enfermedad de Pelizaeus-Merzbacher/genética , Transcripción Genética
11.
J Neurol Sci ; 358(1-2): 453-6, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26453127

RESUMEN

OBJECTIVE: Identification and characterization of a novel pedigree with ATP1A3 mutations presenting with CAPOS syndrome and hemiplegic migraine. METHODS: We have carried out clinical examinations of a three-generation pedigree with CAPOS syndrome and analyzed the ATP1A3 gene to identify causative mutations. The pedigree is of Slavic origin from Southeastern Europe. RESULTS: The clinical phenotype comprised cerebellar ataxia, areflexia, optic atrophy, and sensorineural hearing loss. Pes cavus was present in two of the four patients studied. The symptoms were triggered by fever and varied in severity in family members, exhibiting a chronic progressive course with or without relapses/remissions. The ATP1A3 c.2452G>A mutation was identified in the affected members of the family, while one of the mutation carriers exhibited both CAPOS and hemiplegic migraine. CONCLUSIONS: This study confirms that the specific c.2452G>A mutation in the ATP1A3 gene is associated with the CAPOS syndrome in pedigrees of different ethnic backgrounds. In patients with febrile episodes of ataxic encephalopathy or weakness, or both, genetic analysis of the ATP1A3 gene should be warranted. This is also the first report showing the co-occurrence of hemiplegic migraine and CAPOS syndrome in a patient with ATP1A3 mutations. Migraine has not been previously documented in ATP1A3 mutation carriers.


Asunto(s)
Ataxia Cerebelosa/genética , Deformidades Congénitas del Pie/genética , Pérdida Auditiva Sensorineural/genética , Trastornos Migrañosos/genética , Atrofia Óptica/genética , Reflejo Anormal/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Adolescente , Edad de Inicio , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Fenotipo , Serbia
12.
J Neurosci ; 35(34): 12002-17, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26311780

RESUMEN

Lamin B1 is a component of the nuclear lamina and plays a critical role in maintaining nuclear architecture, regulating gene expression and modulating chromatin positioning. We have previously shown that LMNB1 gene duplications cause autosomal dominant leukodystrophy (ADLD), a fatal adult onset demyelinating disease. The mechanisms by which increased LMNB1 levels cause ADLD are unclear. To address this, we used a transgenic mouse model where Lamin B1 overexpression is targeted to oligodendrocytes. These mice showed severe vacuolar degeneration of the spinal cord white matter together with marked astrogliosis, microglial infiltration, and secondary axonal damage. Oligodendrocytes in the transgenic mice revealed alterations in histone modifications favoring a transcriptionally repressed state. Chromatin changes were accompanied by reduced expression of genes involved in lipid synthesis pathways, many of which are known to play important roles in myelin regulation and are preferentially expressed in oligodendrocytes. Decreased lipogenic gene expression resulted in a significant reduction in multiple classes of lipids involved in myelin formation. Many of these gene expression changes and lipid alterations were observed even before the onset of the phenotype, suggesting a causal role. Our findings establish, for the first time, a link between LMNB1 and lipid synthesis in oligodendrocytes, and provide a mechanistic framework to explain the age dependence and white matter involvement of the disease phenotype. These results have implications for disease pathogenesis and may also shed light on the regulation of lipid synthesis pathways in myelin maintenance and turnover. SIGNIFICANCE STATEMENT: Autosomal dominant leukodystrophy (ADLD) is fatal neurological disorder caused by increased levels of the nuclear protein, Lamin B1. The disease is characterized by an age-dependent loss of myelin, the fatty sheath that covers nerve fibers. We have studied a mouse model where Lamin B1 level are increased in oligodendrocytes, the cell type that produces myelin in the CNS. We demonstrate that destruction of myelin in the spinal cord is responsible for the degenerative phenotype in our mouse model. We show that this degeneration is mediated by reduced expression of lipid synthesis genes and the subsequent reduction in myelin enriched lipids. These findings provide a mechanistic framework to explain the age dependence and tissue specificity of the ADLD disease phenotype.


Asunto(s)
Envejecimiento/metabolismo , Enfermedades Desmielinizantes/metabolismo , Lamina Tipo B/biosíntesis , Metabolismo de los Lípidos/fisiología , Envejecimiento/genética , Animales , Enfermedades Desmielinizantes/genética , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Lámina Nuclear/genética , Lámina Nuclear/metabolismo , Oligodendroglía/metabolismo
13.
BMC Med Genet ; 16: 16, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25927548

RESUMEN

BACKGROUND: Hereditary ataxias are a heterogeneous group of neurodegenerative disorders, where exome sequencing may become an important diagnostic tool to solve clinically or genetically complex cases. METHODS: We describe an Italian family in which three sisters were affected by ataxia with postural/intentional myoclonus and involuntary movements at onset, which persisted during the disease. Oculomotor apraxia was absent. Clinical and genetic data did not allow us to exclude autosomal dominant or recessive inheritance and suggest a disease gene. RESULTS: Exome sequencing identified a homozygous c.6292C > T (p.Arg2098*) mutation in SETX and a heterozygous c.346G > A (p.Gly116Arg) mutation in AFG3L2 shared by all three affected individuals. A fourth sister (II.7) had subclinical myoclonic jerks at proximal upper limbs and perioral district, confirmed by electrophysiology, and carried the p.Gly116Arg change. Three siblings were healthy. Pathogenicity prediction and a yeast-functional assay suggested p.Gly116Arg impaired m-AAA (ATPases associated with various cellular activities) complex function. CONCLUSIONS: Exome sequencing is a powerful tool in identifying disease genes. We identified an atypical form of Ataxia with Oculoapraxia type 2 (AOA2) with myoclonus at onset associated with the c.6292C > T (p.Arg2098*) homozygous mutation. Because the same genotype was described in six cases from a Tunisian family with a typical AOA2 without myoclonus, we speculate this latter feature is associated with a second mutated gene, namely AFG3L2 (p.Gly116Arg variant). We suggest that variant phenotypes may be due to the combined effect of different mutated genes associated to ataxia or related disorders, that will become more apparent as the costs of exome sequencing progressively will reduce, amplifying its diagnostics use, and meanwhile proposing significant challenges in the interpretation of the data.


Asunto(s)
Proteasas ATP-Dependientes/genética , Mutación , Mioclonía/complicaciones , ARN Helicasas/genética , Degeneraciones Espinocerebelosas/complicaciones , Degeneraciones Espinocerebelosas/genética , Proteasas ATP-Dependientes/química , ATPasas Asociadas con Actividades Celulares Diversas , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Niño , ADN Helicasas , Análisis Mutacional de ADN , Exoma/genética , Femenino , Homocigoto , Humanos , Datos de Secuencia Molecular , Enzimas Multifuncionales , Linaje , Postura , Degeneraciones Espinocerebelosas/fisiopatología , Adulto Joven
14.
J Clin Invest ; 123(6): 2719-29, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23676464

RESUMEN

Adult-onset autosomal-dominant leukodystrophy (ADLD) is a progressive and fatal neurological disorder characterized by early autonomic dysfunction, cognitive impairment, pyramidal tract and cerebellar dysfunction, and white matter loss in the central nervous system. ADLD is caused by duplication of the LMNB1 gene, which results in increased lamin B1 transcripts and protein expression. How duplication of LMNB1 leads to myelin defects is unknown. To address this question, we developed a mouse model of ADLD that overexpresses lamin B1. These mice exhibited cognitive impairment and epilepsy, followed by age-dependent motor deficits. Selective overexpression of lamin B1 in oligodendrocytes also resulted in marked motor deficits and myelin defects, suggesting these deficits are cell autonomous. Proteomic and genome-wide transcriptome studies indicated that lamin B1 overexpression is associated with downregulation of proteolipid protein, a highly abundant myelin sheath component that was previously linked to another myelin-related disorder, Pelizaeus-Merzbacher disease. Furthermore, we found that lamin B1 overexpression leads to reduced occupancy of Yin Yang 1 transcription factor at the promoter region of proteolipid protein. These studies identify a mechanism by which lamin B1 overexpression mediates oligodendrocyte cell-autonomous neuropathology in ADLD and implicate lamin B1 as an important regulator of myelin formation and maintenance during aging.


Asunto(s)
Lamina Tipo B/metabolismo , Oligodendroglía/patología , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Animales , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Ataxia de la Marcha/metabolismo , Ataxia de la Marcha/patología , Ataxia de la Marcha/fisiopatología , Predisposición Genética a la Enfermedad , Humanos , Lamina Tipo B/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora , Proteína Proteolipídica de la Mielina/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Oligodendroglía/metabolismo , Enfermedad de Pelizaeus-Merzbacher/patología , Enfermedad de Pelizaeus-Merzbacher/fisiopatología , Regiones Promotoras Genéticas , Unión Proteica , Prueba de Desempeño de Rotación con Aceleración Constante , Convulsiones/metabolismo , Convulsiones/patología , Convulsiones/fisiopatología , Factor de Transcripción YY1/metabolismo
15.
Nat Genet ; 38(10): 1114-23, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16951681

RESUMEN

Adult-onset autosomal dominant leukodystrophy (ADLD) is a slowly progressive neurological disorder characterized by symmetrical widespread myelin loss in the central nervous system, with a phenotype similar to chronic progressive multiple sclerosis. In this study, we identify a genomic duplication that causes ADLD. Affected individuals carry an extra copy of the gene for the nuclear laminar protein lamin B1, resulting in increased gene dosage in brain tissue from individuals with ADLD. Increased expression of lamin B1 in Drosophila melanogaster resulted in a degenerative phenotype. In addition, an abnormal nuclear morphology was apparent when cultured cells overexpressed this protein. This is the first human disease attributable to mutations in the gene encoding lamin B1. Antibodies to lamin B are found in individuals with autoimmune diseases, and it is also an antigen recognized by a monoclonal antibody raised against plaques from brains of individuals with multiple sclerosis. This raises the possibility that lamin B may be a link to the autoimmune attack that occurs in multiple sclerosis.


Asunto(s)
Duplicación de Gen , Genes Dominantes , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Lamina Tipo B/genética , Animales , Secuencia de Bases , Encéfalo/patología , Encéfalo/fisiología , Células Cultivadas , Análisis Mutacional de ADN , Drosophila melanogaster/genética , Femenino , Dosificación de Gen , Ligamiento Genético , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Humanos , Masculino , Datos de Secuencia Molecular
16.
Nature ; 434(7033): 640-4, 2005 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-15800623

RESUMEN

Familial advanced sleep phase syndrome (FASPS) is a human behavioural phenotype characterized by early sleep times and early-morning awakening. It was the first human, mendelian circadian rhythm variant to be well-characterized, and was shown to result from a mutation in a phosphorylation site within the casein kinase I (CKI)-binding domain of the human PER2 gene. To gain a deeper understanding of the mechanisms of circadian rhythm regulation in humans, we set out to identify mutations in human subjects leading to FASPS. We report here the identification of a missense mutation (T44A) in the human CKIdelta gene, which results in FASPS. This mutant kinase has decreased enzymatic activity in vitro. Transgenic Drosophila carrying the human CKIdelta-T44A gene showed a phenotype with lengthened circadian period. In contrast, transgenic mice carrying the same mutation have a shorter circadian period, a phenotype mimicking human FASPS. These results show that CKIdelta is a central component in the mammalian clock, and suggest that mammalian and fly clocks might have different regulatory mechanisms despite the highly conserved nature of their individual components.


Asunto(s)
Quinasa Idelta de la Caseína/genética , Ritmo Circadiano/genética , Mutación Missense/genética , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/fisiopatología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Quinasa Idelta de la Caseína/química , Quinasa Idelta de la Caseína/metabolismo , Caseínas/metabolismo , Ritmo Circadiano/efectos de la radiación , Oscuridad , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Humanos , Luz , Masculino , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Actividad Motora/genética , Actividad Motora/fisiología , Actividad Motora/efectos de la radiación , Linaje , Fenotipo , Fosvitina/metabolismo , Síndrome , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA