Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Epilepsy Behav ; 155: 109800, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657485

RESUMEN

Epilepsy is a neurological disease characterized by spontaneous and recurrent seizures. Epileptic seizures can be initiated and facilitated by inflammatory mechanisms. As the dysregulation of the immune system would be involved in epileptogenesis, it is suggested that anti-inflammatory medications could impact epileptic seizures. These medications could potentially have a side effect by altering the structure and composition of the intestinal microbiota. These changes can disrupt microbial homeostasis, leading to dysbiosis and potentially exacerbating intestinal inflammation. We hypothesize that prednisolone may affect the development of epileptic seizures, potentially influencing the diversity of the intestinal microbiota and the regulation of pro-inflammatory cytokines in intestinal tissue. This study aimed to evaluate the effects of prednisolone treatment on epileptic seizures and investigate the effect of this drug on the bacterial diversity of the intestinal microbiota and markers of inflammatory processes in intestinal tissue. We used Male Wistar rat littermates (n = 31, 90-day-old) divided into four groups: positive control treated with 2 mg/kg of diazepam (n = 6), negative control treated with 0.9 g% sodium chloride (n = 6), and the remaining two groups were subjected to treatment with prednisolone, with one receiving 1 mg/kg (n = 9) and the other 5 mg/kg (n = 10). All administrations were performed intraperitoneally (i.p.) over 14 days. To induce the chronic model of epileptic seizures, we administered pentylenetetrazole (PTZ) 25 mg/kg i.p. on alternate days. Seizure latency (n = 6 - 10) and TNF-α and IL-1ß concentrations from intestinal samples were measured by ELISA (n = 6 per group), and intestinal microbiota was evaluated with intergenic ribosomal RNA (rRNA) spacer (RISA) analysis (n = 6 per group). The prednisolone treatment demonstrated an increase in the latency time of epileptic seizures and TNF-α and IL-1ß concentrations compared to controls. There was no statistically significant difference in intestinal microbiota diversity between the different treatments. However, there was a strong positive correlation between microbial diversity and TNF-α and IL-1ß concentrations. The administration of prednisolone yields comparable results to diazepam on increasing latency between seizures, exhibiting promise for its use in clinical studies. Although there were no changes in intestinal microbial diversity, the increase in the TNF-α and IL-1ß cytokines in intestinal tissue may be linked to immune system signaling pathways involving the intestinal microbiota. Additional research is necessary to unravel the intricacies of these pathways and to understand their implications for clinical practice.


Asunto(s)
Citocinas , Modelos Animales de Enfermedad , Epilepsia , Microbioma Gastrointestinal , Excitación Neurológica , Prednisolona , Ratas Wistar , Animales , Prednisolona/farmacología , Prednisolona/uso terapéutico , Masculino , Citocinas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Excitación Neurológica/efectos de los fármacos , Ratas , Epilepsia/tratamiento farmacológico , Epilepsia/microbiología , Antiinflamatorios/farmacología
2.
Steroids ; 193: 109202, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36828350

RESUMEN

Epilepsy is a chronic disease characterized by an ongoing predisposition to seizures. Although inflammation has emerged as a crucial factor in the etiology of epilepsy, no approaches to anti-inflammatory treatment have been clinically proven to date. Betamethasone (a corticosteroid drug used in the clinic for its anti-inflammatory and immunosuppressive effects) has never been evaluated in attenuating the intensity of seizures in a kindling animal model of seizures. Using a kindling model in male wistar rats, this study evaluated the effect of betamethasone on the severity of seizures and levels of pro-inflammatory interleukins. Seizures were induced by pentylenetetrazole (30 mg/kg) on alternate days for 15 days. The animals were divided into four groups: a control group treated with saline, another control group treated with diazepam (2 mg/kg), and two groups treated with betamethasone (0.125 and 0.250 mg/kg, respectively). Open field test was conducted. Betamethasone treatments were effective in reducing the intensity of epileptic seizures. There were lower levels of Tumor Necrosis Factor-α and interleukin-1ß in the cortex, compared to the saline group, on the other hand, levels in the hippocampus remained similar to the control groups. There was no change in the levels of interleukin-6 in the evaluated structures. Serum inflammatory mediators remained similar. Lower quantities of inflammatory mediators in the central nervous system may have been the key to the reduced severity of seizures on the Racine scale.


Asunto(s)
Betametasona , Epilepsia , Ratas , Animales , Masculino , Betametasona/efectos adversos , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Epilepsia/tratamiento farmacológico , Ratas Wistar , Antiinflamatorios/uso terapéutico , Mediadores de Inflamación/efectos adversos , Modelos Animales de Enfermedad , Anticonvulsivantes/efectos adversos
3.
Epilepsy Res ; 186: 107018, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36126608

RESUMEN

Epilepsy is a chronic neurological disorder and there is increasing evidence about the role of inflammation in epileptogenesis. These findings have spurred the search for new immunomodulatory approaches that can improve prognosis. Using an animal model of chemically-induced epileptic seizures, we tested exercise alone as non-pharmacological therapy, and exercise combined with an anti-inflammatory drug. Five groups were used: sedentary, diazepam, aerobic exercise alone, aerobic exercise combined with an anti-inflammatory drug, and naive control. Our goal was to compare the severity of the epileptic seizures between groups as well as seizure latency in a pentylenetetrazole-induced paradigm. Cytokine levels (IL-1ß, TNF-α, and IL-10) were measured. Both exercise groups showed a reduction in seizure severity and lower levels of pro-inflammatory cytokines in the cortex, while the levels of cytokines in the hippocampus remained unaffected.


Asunto(s)
Epilepsia , Pentilenotetrazol , Animales , Antiinflamatorios/efectos adversos , Citocinas/metabolismo , Diazepam/uso terapéutico , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Ejercicio Físico , Hipocampo/metabolismo , Interleucina-10 , Pentilenotetrazol/toxicidad , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo
4.
Microb Pathog ; 163: 105376, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34974121

RESUMEN

The gut microbiota is a complex community composed by several microorganisms that interact in the maintenance of homeostasis and contribute to physiological processes, including brain function. The relationship of the taxonomic composition of the gut microbiota with neurological diseases such as autism, Parkinson's, Alzheimer's, anxiety, and depression is widely recognized. The immune system is an important intermediary between the gut microbiota and the central nervous system, being one of the communication routes of the gut-brain axis. Although the complexity of the relationship between inflammation and epilepsy has not yet been elucidated, inflammatory processes are similar in many ways to the consequences of dysbiosis and contribute to disease progression. This study aimed to analyze the taxonomic composition of the gut microbiota of rats treated with prednisolone in a kindling model of epilepsy. Male Wistar rats (90 days, n = 24) divided into four experimental groups: sodium chloride solution 0.9 g%, diazepam 2 mg/kg, prednisolone 1 mg/kg, and prednisolone 5 mg/kg administered intraperitoneally (i.p.) for 14 days. The kindling model was induced by pentylenetetrazole (PTZ) 25 mg/kg i.p. on alternate days. The taxonomic profile was established by applying metagenomic DNA sequencing. There was no change in alpha diversity, and the composition of the gut microbiota between prednisolone and diazepam was similar. The significant increase in Verrucomicrobia, Saccharibacteria, and Actinobacteria may be related to the protective activity against seizures and inflammatory processes that cause some cases of epilepsy. Further studies are needed to investigate the functional influence that these species have on epilepsy and the inflammatory processes that trigger it.


Asunto(s)
Microbioma Gastrointestinal , Pentilenotetrazol , Animales , Masculino , Prednisolona , Ratas , Ratas Wistar , Convulsiones/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA