Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 22(1): 332, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34872606

RESUMEN

BACKGROUND: Cytosine modifications in DNA such as 5-methylcytosine (5mC) underlie a broad range of developmental processes, maintain cellular lineage specification, and can define or stratify types of cancer and other diseases. However, the wide variety of approaches available to interrogate these modifications has created a need for harmonized materials, methods, and rigorous benchmarking to improve genome-wide methylome sequencing applications in clinical and basic research. Here, we present a multi-platform assessment and cross-validated resource for epigenetics research from the FDA's Epigenomics Quality Control Group. RESULTS: Each sample is processed in multiple replicates by three whole-genome bisulfite sequencing (WGBS) protocols (TruSeq DNA methylation, Accel-NGS MethylSeq, and SPLAT), oxidative bisulfite sequencing (TrueMethyl), enzymatic deamination method (EMSeq), targeted methylation sequencing (Illumina Methyl Capture EPIC), single-molecule long-read nanopore sequencing from Oxford Nanopore Technologies, and 850k Illumina methylation arrays. After rigorous quality assessment and comparison to Illumina EPIC methylation microarrays and testing on a range of algorithms (Bismark, BitmapperBS, bwa-meth, and BitMapperBS), we find overall high concordance between assays, but also differences in efficiency of read mapping, CpG capture, coverage, and platform performance, and variable performance across 26 microarray normalization algorithms. CONCLUSIONS: The data provided herein can guide the use of these DNA reference materials in epigenomics research, as well as provide best practices for experimental design in future studies. By leveraging seven human cell lines that are designated as publicly available reference materials, these data can be used as a baseline to advance epigenomics research.


Asunto(s)
Epigénesis Genética , Epigenómica/métodos , Control de Calidad , 5-Metilcitosina , Algoritmos , Islas de CpG , ADN/genética , Metilación de ADN , Epigenoma , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Alineación de Secuencia , Análisis de Secuencia de ADN/métodos , Sulfitos , Secuenciación Completa del Genoma/métodos
3.
Invest Ophthalmol Vis Sci ; 61(12): 11, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33049059

RESUMEN

Purpose: Although zebrafish rods begin to develop as early as 2 days postfertilization (dpf), they are not deemed anatomically mature and functional until 15 to 21 dpf. A recent study detected a small electroretinogram (ERG) from rods in a cone mutant called no optokinetic response f (nof) at 5 dpf, suggesting that young rods are functional. Whether they can mediate behavioral responses in larvae is unknown. Methods: We first confirmed rod function by measuring nof ERGs under photopic and scotopic illumination at 6 dpf. We evaluated the role of rods in visual behaviors using two different assays: the visual-motor response (VMR) and optokinetic response (OKR). We measured responses from wild-type (WT) larvae and nof mutants under photopic and scotopic illuminations at 6 dpf. Results: Nof mutants lacked a photopic ERG. However, after prolonged dark adaptation, they displayed scotopic ERGs. Compared with WT larvae, the nof mutants displayed reduced VMRs. The VMR difference during light onset gradually diminished with decreased illumination and became nearly identical at lower light intensities. Additionally, light-adapted nof mutants did not display an OKR, whereas dark-adapted nof mutants displayed scotopic OKRs. Conclusions: Because the nof mutants lacked a photopic ERG but displayed scotopic ERGs after dark adaptation, the mutants clearly had functional rods. WT larvae and the nof mutants displayed comparable scotopic light-On VMRs and scotopic OKRs after dark adaptation, suggesting that these responses were driven primarily by rods. Together, these observations indicate that rods contribute to zebrafish visual behaviors as early as 6 dpf.


Asunto(s)
Células Fotorreceptoras Retinianas Bastones/fisiología , Visión Ocular/fisiología , Pez Cebra/fisiología , Animales , Visión de Colores/fisiología , Electrorretinografía , Técnicas de Genotipaje , Larva , Visión Nocturna/fisiología , Nistagmo Optoquinético/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...