Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36612329

RESUMEN

Lakes play an important role in providing various ecosystem services. However, stressors such as climate change, land use, or land-cover change threaten the ecological functions of lakes. National and international legislations address these threats and establish consistent, long-term monitoring schemes. Remote sensing techniques based on the use of Unmanned Aerial Vehicles (UAV) have recently been demonstrated to provide accurate and low-cost spatio-temporal views for the assessment of the ecological status of aquatic ecosystems and the identification of areas at risk of contamination. Few studies have been carried out so far on the employment of these tools in the monitoring of lakes. Therefore, high-resolution UAV surveys were used to analyse and evaluate natural and anthropogenic impacts on the habitat status of a volcanic lake in a protected area. Five UAV flights took place during a year-long cycle (November 2020 to November 2021) in a volcanic lake located in southern Italy. For each flight performance, an orthomosaic of georeferenced RGB images was obtained, and the different features of interest were monitored and quantified using automated processing in a GIS environment. The UAV images made it possible not only to estimate the flooded shores but also to detect the impact of human-made structures and infrastructures on the lagoon environment. It has been possible to observe how the rapid changes in lake-water level have led to the submersion of about 90.000 m2 of terrain in winter, causing the fragmentation and degradation of habitats, while the connectivity of the natural ecosystem has been threatened by the presence of the road around the lake. The proposed methodology is rather simple and easily replicable by decision makers and local administrators and can be useful for choosing the best restoration interventions.


Asunto(s)
Ecosistema , Lagos , Humanos , Lagos/química , Dispositivos Aéreos No Tripulados , Cambio Climático , Italia , Monitoreo del Ambiente/métodos
2.
Biochim Biophys Acta ; 1645(1): 40-8, 2003 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-12535609

RESUMEN

The rat liver threonine deaminase is a cytoplasmic enzyme that catalyses the pyridoxal-phosphate-dependent dehydrative deamination of L-threonine and L-serine to ammonia and alpha-ketobutyrate and pyruvate, respectively, in vivo. During deamination, a molecule of the cofactor is converted to pyridoxamine phosphate. Recently, the ability of this enzyme to accomplish an inverse half-reaction, restoring pyridoxal-phosphate and L-alanine or L-aminobutyrate, respectively, from pyruvate or 2-oxobutyrate, was reported. In order to investigate the molecular mechanisms of this transaminating activity, a molecular model of rat liver threonine deaminase was constructed on the basis of sequence homology with the biosynthetic threonine deaminase of Escherichia coli, the crystal structure of which is known. The model has structural features shared by aminotransferases, suggesting that tertiary structural elements may be responsible for the transaminating activity observed for rat liver threonine deaminase.


Asunto(s)
Hígado/enzimología , Treonina Deshidratasa/metabolismo , Transaminasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Citoplasma/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Ratas , Alineación de Secuencia , Relación Estructura-Actividad , Treonina Deshidratasa/química , Transaminasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...