Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Insect Sci ; 30(6): 1734-1748, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36734172

RESUMEN

Recent developments allowed establishing virtual-reality (VR) setups to study multiple aspects of visual learning in honey bees under controlled experimental conditions. Here, we adopted a VR environment to investigate the visual learning in the buff-tailed bumble bee Bombus terrestris. Based on responses to appetitive and aversive reinforcements used for conditioning, we show that bumble bees had the proper appetitive motivation to engage in the VR experiments and that they learned efficiently elemental color discriminations. In doing so, they reduced the latency to make a choice, increased the proportion of direct paths toward the virtual stimuli and walked faster toward them. Performance in a short-term retention test showed that bumble bees chose and fixated longer on the correct stimulus in the absence of reinforcement. Body size and weight, although variable across individuals, did not affect cognitive performances and had a mild impact on motor performances. Overall, we show that bumble bees are suitable experimental subjects for experiments on visual learning under VR conditions, which opens important perspectives for invasive studies on the neural and molecular bases of such learning given the robustness of these insects and the accessibility of their brain.


Asunto(s)
Encéfalo , Realidad Virtual , Abejas , Animales , Cabeza
2.
Sci Rep ; 11(1): 21127, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702914

RESUMEN

Honey bees exhibit remarkable visual learning capacities, which can be studied using virtual reality (VR) landscapes in laboratory conditions. Existing VR environments for bees are imperfect as they provide either open-loop conditions or 2D displays. Here we achieved a true 3D environment in which walking bees learned to discriminate a rewarded from a punished virtual stimulus based on color differences. We included ventral or frontal background cues, which were also subjected to 3D updating based on the bee movements. We thus studied if and how the presence of such motion cues affected visual discrimination in our VR landscape. Our results showed that the presence of frontal, and to a lesser extent, of ventral background motion cues impaired the bees' performance. Whenever these cues were suppressed, color discrimination learning became possible. We analyzed the specific contribution of foreground and background cues and discussed the role of attentional interference and differences in stimulus salience in the VR environment to account for these results. Overall, we show how background and target cues may interact at the perceptual level and influence associative learning in bees. In addition, we identify issues that may affect decision-making in VR landscapes, which require specific control by experimenters.


Asunto(s)
Abejas/fisiología , Percepción de Color/fisiología , Aprendizaje/fisiología , Realidad Virtual , Animales
3.
Front Behav Neurosci ; 15: 690571, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354573

RESUMEN

Navigating animals combine multiple perceptual faculties, learn during exploration, retrieve multi-facetted memory contents, and exhibit goal-directedness as an expression of their current needs and motivations. Navigation in insects has been linked to a variety of underlying strategies such as path integration, view familiarity, visual beaconing, and goal-directed orientation with respect to previously learned ground structures. Most works, however, study navigation either from a field perspective, analyzing purely behavioral observations, or combine computational models with neurophysiological evidence obtained from lab experiments. The honey bee (Apis mellifera) has long been a popular model in the search for neural correlates of complex behaviors and exhibits extraordinary navigational capabilities. However, the neural basis for bee navigation has not yet been explored under natural conditions. Here, we propose a novel methodology to record from the brain of a copter-mounted honey bee. This way, the animal experiences natural multimodal sensory inputs in a natural environment that is familiar to her. We have developed a miniaturized electrophysiology recording system which is able to record spikes in the presence of time-varying electric noise from the copter's motors and rotors, and devised an experimental procedure to record from mushroom body extrinsic neurons (MBENs). We analyze the resulting electrophysiological data combined with a reconstruction of the animal's visual perception and find that the neural activity of MBENs is linked to sharp turns, possibly related to the relative motion of visual features. This method is a significant technological step toward recording brain activity of navigating honey bees under natural conditions. By providing all system specifications in an online repository, we hope to close a methodological gap and stimulate further research informing future computational models of insect navigation.

4.
Front Behav Neurosci ; 15: 647224, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33994968

RESUMEN

As a canary in a coalmine warns of dwindling breathable air, the honeybee can indicate the health of an ecosystem. Honeybees are the most important pollinators of fruit-bearing flowers, and share similar ecological niches with many other pollinators; therefore, the health of a honeybee colony can reflect the conditions of a whole ecosystem. The health of a colony may be mirrored in social signals that bees exchange during their sophisticated body movements such as the waggle dance. To observe these changes, we developed an automatic system that records and quantifies social signals under normal beekeeping conditions. Here, we describe the system and report representative cases of normal social behavior in honeybees. Our approach utilizes the fact that honeybee bodies are electrically charged by friction during flight and inside the colony, and thus they emanate characteristic electrostatic fields when they move their bodies. These signals, together with physical measurements inside and outside the colony (temperature, humidity, weight of the hive, and activity at the hive entrance) will allow quantification of normal and detrimental conditions of the whole colony. The information provided instructs how to setup the recording device, how to install it in a normal bee colony, and how to interpret its data.

5.
Front Behav Neurosci ; 14: 590999, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192371

RESUMEN

Central place foraging insects like honeybees and bumblebees learn to navigate efficiently between nest and feeding site. Essential components of this behavior can be moved to the laboratory. A major component of navigational learning is the active exploration of the test arena. These conditions have been used here to search for neural correlates of exploratory walking in the central arena (ground), and thigmotactic walking in the periphery (slope). We chose mushroom body extrinsic neurons (MBENs) because of their learning-related plasticity and their multi-modal sensitivities that may code relevant parameters in a brain state-dependent way. Our aim was to test whether MBENs code space-related components or are more involved in state-dependent processes characterizing exploration and thigmotaxis. MBENs did not respond selectively to body directions or locations. Their spiking activity differently correlated with walking speed depending on the animals' locations: on the ground, reflecting exploration, or on the slope, reflecting thigmotaxis. This effect depended on walking speed in different ways for different animals. We then asked whether these effects depended on spatial parameters or on the two states, exploration and thigmotaxis. Significant epochs of stable changes in spiking did not correlate with restricted locations in the arena, body direction, or walking transitions between ground and slope. We thus conclude that the walking speed dependencies are caused by the two states, exploration and thigmotaxis, rather than by spatial parameters.

6.
Front Behav Neurosci ; 14: 62, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32372927

RESUMEN

The social behavior of honeybees (Apis mellifera) has been extensively investigated, but little is known about its neuronal correlates. We developed a method that allowed us to record extracellularly from mushroom body extrinsic neurons (MB ENs) in a freely moving bee within a small but functioning mini colony of approximately 1,000 bees. This study aimed to correlate the neuronal activity of multimodal high-order MB ENs with social behavior in a close to natural setting. The behavior of all bees in the colony was video recorded. The behavior of the recorded animal was compared with other hive mates and no significant differences were found. Changes in the spike rate appeared before, during or after social interactions. The time window of the strongest effect on spike rate changes ranged from 1 s to 2 s before and after the interaction, depending on the individual animal and recorded neuron. The highest spike rates occurred when the experimental animal was situated close to a hive mate. The variance of the spike rates was analyzed as a proxy for high order multi-unit processing. Comparing randomly selected time windows with those in which the recorded animal performed social interactions showed a significantly increased spike rate variance during social interactions. The experimental set-up employed for this study offers a powerful opportunity to correlate neuronal activity with intrinsically motivated behavior of socially interacting animals. We conclude that the recorded MB ENs are potentially involved in initiating and controlling social interactions in honeybees.

7.
J Neurosci Methods ; 254: 1-9, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26192327

RESUMEN

BACKGROUND: Honeybees are well established models of neural correlates of sensory function, learning and memory formation. Here we report a novel approach allowing to record high-order mushroom body-extrinsic interneurons in the brain of worker bees within a functional colony. New method The use of two 100 cm long twisted copper electrodes allowed recording of up to four units of mushroom body-extrinsic neurons simultaneously for up to 24h in animals moving freely between members of the colony. Every worker, including the recorded bee, hatched in the experimental environment. The group consisted of 200 animals in average. RESULTS: Animals explored different regions of the comb and interacted with other colony members. The activities of the units were not selective for locations on the comb, body directions with respect to gravity and olfactory signals on the comb, or different social interactions. However, combinations of these parameters defined neural activity in a unit-specific way. In addition, units recorded from the same animal co-varied according to unknown factors. Comparison with existing method(s): All electrophysiological studies with honey bees were performed so far on constrained animals outside their natural behavioral contexts. Yet no neuronal correlates were measured in a social context. Free mobility of recoded insects over a range of a quarter square meter allows addressing questions concerning neural correlates of social communication, planning of tasks within the colony and attention-like processes. CONCLUSIONS: The method makes it possible to study neural correlates of social behavior in a near-natural setting within the honeybee colony.


Asunto(s)
Abejas/fisiología , Conducta Animal/fisiología , Electrofisiología/métodos , Interneuronas/fisiología , Conducta Social , Potenciales de Acción , Animales , Encéfalo/fisiología , Electrodos , Electrofisiología/instrumentación , Ambiente , Conducta Exploratoria/fisiología , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...