Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488852

RESUMEN

Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a 'molecular glue' that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.


Asunto(s)
Neuroblastoma , Precursores del ARN , Sulfonamidas , Humanos , Animales , Ratones , Precursores del ARN/genética , Precursores del ARN/metabolismo , Glutaminasa/genética , Reprogramación Metabólica , Histona Demetilasas con Dominio de Jumonji/metabolismo
2.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38168249

RESUMEN

Ubiquitin-conjugating enzymes (E2s) are key for regulating protein function and turnover via ubiquitination but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Transgenic expression of human UBE2D2, homologous to eff, partially rescues the lifespan and proteostasis deficits caused by muscle-specific effRNAi by re-establishing the physiological levels of effRNAi-regulated proteins, which include several regulators of proteostasis. Interestingly, UBE2D/eff knockdown in young age reproduces part of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme that ensures protein quality control and helps maintain a youthful proteome composition during aging.

3.
Nat Commun ; 14(1): 7348, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963875

RESUMEN

Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.


Asunto(s)
Peroxisomas , Ubiquitina , Humanos , Ubiquitinación , Ubiquitina/metabolismo , Transporte de Proteínas/fisiología , Peroxisomas/metabolismo , Membranas Intracelulares/metabolismo
4.
bioRxiv ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37425900

RESUMEN

Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that Jumonji Domain Containing 6, Arginine Demethylase and Lysine Hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven neuroblastoma. JMJD6 cooperates with MYC in cellular transformation by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a "molecular glue" that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.

5.
bioRxiv ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37205560

RESUMEN

53BP1 is a well-established DNA damage repair factor recently shown to regulate gene expression and critically influence tumor suppression and neural development. For gene regulation, how 53BP1 is regulated remains unclear. Here, we showed that 53BP1-serine 25 phosphorylation by ATM is required for neural progenitor cell proliferation and neuronal differentiation in cortical organoids. 53BP1-serine 25 phosphorylation dynamics controls 53BP1 target genes for neuronal differentiation and function, cellular response to stress, and apoptosis. Beyond 53BP1, ATM is required for phosphorylation of factors in neuronal differentiation, cytoskeleton, p53 regulation, and ATM, BNDF, and WNT signaling pathways for cortical organoid differentiation. Overall, our data suggest that 53BP1 and ATM control key genetic programs required for human cortical development.

7.
Nat Commun ; 14(1): 809, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781850

RESUMEN

Rearrangments in Histone-lysine-N-methyltransferase 2A (KMT2Ar) are associated with pediatric, adult and therapy-induced acute leukemias. Infants with KMT2Ar acute lymphoblastic leukemia (ALL) have a poor prognosis with an event-free-survival of 38%. Herein we evaluate 1116 FDA approved compounds in primary KMT2Ar infant ALL specimens and identify a sensitivity to proteasome inhibition. Upon exposure to this class of agents, cells demonstrate a depletion of histone H2B monoubiquitination (H2Bub1) and histone H3 lysine 79 dimethylation (H3K79me2) at KMT2A target genes in addition to a downregulation of the KMT2A gene expression signature, providing evidence that it targets the KMT2A transcriptional complex and alters the epigenome. A cohort of relapsed/refractory KMT2Ar patients treated with this approach on a compassionate basis had an overall response rate of 90%. In conclusion, we report on a high throughput drug screen in primary pediatric leukemia specimens whose results translate into clinically meaningful responses. This innovative treatment approach is now being evaluated in a multi-institutional upfront trial for infants with newly diagnosed ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Complejo de la Endopetidasa Proteasomal , Lactante , Adulto , Humanos , Niño , Complejo de la Endopetidasa Proteasomal/genética , Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transcriptoma
9.
Cell Rep ; 37(6): 109971, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758314

RESUMEN

Skeletal muscle atrophy is a debilitating condition that occurs with aging and disease, but the underlying mechanisms are incompletely understood. Previous work determined that common transcriptional changes occur in muscle during atrophy induced by different stimuli. However, whether this holds true at the proteome level remains largely unexplored. Here, we find that, contrary to this earlier model, distinct atrophic stimuli (corticosteroids, cancer cachexia, and aging) induce largely different mRNA and protein changes during muscle atrophy in mice. Moreover, there is widespread transcriptome-proteome disconnect. Consequently, atrophy markers (atrogenes) identified in earlier microarray-based studies do not emerge from proteomics as generally induced by atrophy. Rather, we identify proteins that are distinctly modulated by different types of atrophy (herein defined as "atroproteins") such as the myokine CCN1/Cyr61, which regulates myofiber type switching during sarcopenia. Altogether, these integrated analyses indicate that different catabolic stimuli induce muscle atrophy via largely distinct mechanisms.


Asunto(s)
Regulación de la Expresión Génica , Músculo Esquelético/patología , Atrofia Muscular/patología , Proteoma , Sarcopenia/patología , Transcriptoma , Envejecimiento , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo
10.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33974070

RESUMEN

Recent evidence indicates that the composition of the ribosome is heterogeneous and that multiple types of specialized ribosomes regulate the synthesis of specific protein subsets. In Drosophila, we find that expression of the ribosomal RpS28 protein variants RpS28a and RpS28-like preferentially occurs in the germline, a tissue resistant to aging and that it significantly declines in skeletal muscle during aging. Muscle-specific overexpression of RpS28a at levels similar to those seen in the germline decreases early mortality and promotes the synthesis of a subset of proteins with known anti-aging roles, some of which have preferential expression in the germline. These findings indicate a contribution of specialized ribosomal proteins to the regulation of the muscle proteome during aging.


Asunto(s)
Proteoma , Proteínas Ribosómicas , Animales , Proteínas Ribosómicas/genética , Proteoma/genética , Proteoma/metabolismo , Biosíntesis de Proteínas , Ribosomas/genética , Ribosomas/metabolismo , Músculo Esquelético/metabolismo , Drosophila/genética , Drosophila/metabolismo , ARN Ribosómico/metabolismo
11.
Nat Commun ; 12(1): 1418, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658508

RESUMEN

Sarcopenia is a degenerative condition that consists in age-induced atrophy and functional decline of skeletal muscle cells (myofibers). A common hypothesis is that inducing myofiber hypertrophy should also reinstate myofiber contractile function but such model has not been extensively tested. Here, we find that the levels of the ubiquitin ligase UBR4 increase in skeletal muscle with aging, and that UBR4 increases the proteolytic activity of the proteasome. Importantly, muscle-specific UBR4 loss rescues age-associated myofiber atrophy in mice. However, UBR4 loss reduces the muscle specific force and accelerates the decline in muscle protein quality that occurs with aging in mice. Similarly, hypertrophic signaling induced via muscle-specific loss of UBR4/poe and of ESCRT members (HGS/Hrs, STAM, USP8) that degrade ubiquitinated membrane proteins compromises muscle function and shortens lifespan in Drosophila by reducing protein quality control. Altogether, these findings indicate that these ubiquitin ligases antithetically regulate myofiber size and muscle protein quality control.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Fibras Musculares Esqueléticas/fisiología , Proteínas Musculares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Modificados Genéticamente , Autofagia/fisiología , Proteínas de Unión a Calmodulina/genética , Proteínas de Drosophila/genética , Femenino , Lisosomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Proteolisis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética
12.
Sci Rep ; 11(1): 5154, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664368

RESUMEN

USP7, which encodes a deubiquitylating enzyme, is among the most frequently mutated genes in pediatric T-ALL, with somatic heterozygous loss-of-function mutations (haploinsufficiency) predominantly affecting the subgroup that has aberrant TAL1 oncogene activation. Network analysis of > 200 T-ALL transcriptomes linked USP7 haploinsufficiency with decreased activities of E-proteins. E-proteins are also negatively regulated by TAL1, leading to concerted down-regulation of E-protein target genes involved in T-cell development. In T-ALL cell lines, we showed the physical interaction of USP7 with E-proteins and TAL1 by mass spectrometry and ChIP-seq. Haploinsufficient but not complete CRISPR knock-out of USP7 showed accelerated cell growth and validated transcriptional down-regulation of E-protein targets. Our study unveiled the synergistic effect of USP7 haploinsufficiency with aberrant TAL1 activation on T-ALL, implicating USP7 as a haploinsufficient tumor suppressor in T-ALL. Our findings caution against a universal oncogene designation for USP7 while emphasizing the dosage-dependent consequences of USP7 inhibitors currently under development as potential cancer therapeutics.


Asunto(s)
Oncogenes/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Peptidasa Específica de Ubiquitina 7/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Linaje de la Célula/genética , Proliferación Celular/genética , Regulación Leucémica de la Expresión Génica/genética , Haploinsuficiencia/genética , Humanos , Pediatría , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Activación Transcripcional/genética
13.
J Proteome Res ; 20(1): 337-345, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33175545

RESUMEN

Tandem mass tag (TMT)-based mass spectrometry (MS) enables deep proteomic profiling of more than 10,000 proteins in complex biological samples but requires up to 100 µg protein in starting materials during a standard analysis. Here, we present a streamlined protocol to quantify more than 9000 proteins with 0.5 µg protein per sample by 16-plex TMT coupled with two-dimensional liquid chromatography and tandem mass spectrometry (LC/LC-MS/MS). In this protocol, we optimized multiple conditions to reduce sample loss, including processing each sample in a single tube to minimize surface adsorption, increasing digestion enzymes to shorten proteolysis and function as carriers, eliminating a desalting step between digestion and TMT labeling, and developing miniaturized basic pH LC for prefractionation. By profiling 16 identical human brain tissue samples of Alzheimer's disease (AD), vascular dementia (VaD), and non-dementia controls, we directly compared this new microgram-scale protocol to the standard-scale protocol, quantifying 9116 and 10,869 proteins, respectively. Importantly, bioinformatics analysis indicated that the microgram-scale protocol had adequate sensitivity and reproducibility to detect differentially expressed proteins in disease-related pathways. Thus, this newly developed protocol is of general application for deep proteomics analysis of biological and clinical samples at sub-microgram levels.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Proteómica , Reproducibilidad de los Resultados
14.
J Vis Exp ; (162)2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32894271

RESUMEN

Isobaric tandem mass tag (TMT) labeling is widely used in proteomics because of its high multiplexing capacity and deep proteome coverage. Recently, an expanded 16-plex TMT method has been introduced, which further increases the throughput of proteomic studies. In this manuscript, we present an optimized protocol for 16-plex TMT-based deep-proteome profiling, including protein sample preparation, enzymatic digestion, TMT labeling reaction, two-dimensional reverse-phase liquid chromatography (LC/LC) fractionation, tandem mass spectrometry (MS/MS), and computational data processing. The crucial quality control steps and improvements in the process specific for the 16-plex TMT analysis are highlighted. This multiplexed process offers a powerful tool for profiling a variety of complex samples such as cells, tissues, and clinical specimens. More than 10,000 proteins and posttranslational modifications such as phosphorylation, methylation, acetylation, and ubiquitination in highly complex biological samples from up to 16 different samples can be quantified in a single experiment, providing a potent tool for basic and clinical research.


Asunto(s)
Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía de Fase Inversa , Biología Computacional , Proteoma/química , Proteoma/metabolismo
15.
Nat Commun ; 11(1): 4060, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792512

RESUMEN

Chromatin modifiers affect spatiotemporal gene expression programs that underlie organismal development. The Polycomb repressive complex 2 (PRC2) is a crucial chromatin modifier in executing neurodevelopmental programs. Here, we find that PRC2 interacts with the nucleic acid-binding protein Ybx1. In the mouse embryo in vivo, Ybx1 is required for forebrain specification and restricting mid-hindbrain growth. In neural progenitor cells (NPCs), Ybx1 controls self-renewal and neuronal differentiation. Mechanistically, Ybx1 highly overlaps PRC2 binding genome-wide, controls PRC2 distribution, and inhibits H3K27me3 levels. These functions are consistent with Ybx1-mediated promotion of genes involved in forebrain specification, cell proliferation, or neuronal differentiation. In Ybx1-knockout NPCs, H3K27me3 reduction by PRC2 enzymatic inhibitor or genetic depletion partially rescues gene expression and NPC functions. Our findings suggest that Ybx1 fine-tunes PRC2 activities to regulate spatiotemporal gene expression in embryonic neural development and uncover a crucial epigenetic mechanism balancing forebrain-hindbrain lineages and self-renewal-differentiation choices in NPCs.


Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Inmunoprecipitación de Cromatina , Drosophila , Epigénesis Genética/genética , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , N-Metiltransferasa de Histona-Lisina/genética , Inmunoprecipitación , Ratones , Ratones Noqueados , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
17.
Neuron ; 105(6): 975-991.e7, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31926610

RESUMEN

Alzheimer's disease (AD) displays a long asymptomatic stage before dementia. We characterize AD stage-associated molecular networks by profiling 14,513 proteins and 34,173 phosphosites in the human brain with mass spectrometry, highlighting 173 protein changes in 17 pathways. The altered proteins are validated in two independent cohorts, showing partial RNA dependency. Comparisons of brain tissue and cerebrospinal fluid proteomes reveal biomarker candidates. Combining with 5xFAD mouse analysis, we determine 15 Aß-correlated proteins (e.g., MDK, NTN1, SMOC1, SLIT2, and HTRA1). 5xFAD shows a proteomic signature similar to symptomatic AD but exhibits activation of autophagy and interferon response and lacks human-specific deleterious events, such as downregulation of neurotrophic factors and synaptic proteins. Multi-omics integration prioritizes AD-related molecules and pathways, including amyloid cascade, inflammation, complement, WNT signaling, TGF-ß and BMP signaling, lipid metabolism, iron homeostasis, and membrane transport. Some Aß-correlated proteins are colocalized with amyloid plaques. Thus, the multilayer omics approach identifies protein networks during AD progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Progresión de la Enfermedad , Redes y Vías Metabólicas , Proteoma/metabolismo , Proteómica , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Mutantes , Persona de Mediana Edad , Fosfoproteínas/metabolismo
18.
Nat Commun ; 10(1): 3718, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420543

RESUMEN

High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes, PDGFRA and NTRK1, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the NTRK1 mutation induces a higher activation of AKT downstream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the PDGFRA mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of NTRK-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPKa1 and AMPKa2), confirming the validity of the multiomics integrative approaches, and providing novel tumor vulnerabilities.


Asunto(s)
Neoplasias Encefálicas/genética , Perfilación de la Expresión Génica , Glioma/genética , Proteómica , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Modelos Animales de Enfermedad , Retroalimentación Fisiológica , Glioma/metabolismo , Ratones , Mutación , Proteína Oncogénica p65(gag-jun)/metabolismo , Fosfopéptidos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor trkA/genética , Transducción de Señal , Biología de Sistemas , Regulación hacia Arriba
19.
Cell Rep ; 28(5): 1268-1281.e6, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31365869

RESUMEN

Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Musculares/metabolismo , Miofibrillas/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas de Unión a Calmodulina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Hipertrofia , Ratones , Proteínas Musculares/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
20.
Genome Res ; 29(8): 1262-1276, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31249065

RESUMEN

Organisms use endogenous clocks to adapt to the rhythmicity of the environment and to synchronize social activities. Although the circadian cycle is implicated in aging, it is unknown whether natural variation in its function contributes to differences in lifespan between populations and whether the circadian clock of specific tissues is key for longevity. We have sequenced the genomes of Drosophila melanogaster strains with exceptional longevity that were obtained via multiple rounds of selection from a parental strain. Comparison of genomic, transcriptomic, and proteomic data revealed that changes in gene expression due to intergenic polymorphisms are associated with longevity and preservation of skeletal muscle function with aging in these strains. Analysis of transcription factors differentially modulated in long-lived versus parental strains indicates a possible role of circadian clock core components. Specifically, there is higher period and timeless and lower cycle expression in the muscle of strains with delayed aging compared to the parental strain. These changes in the levels of circadian clock transcription factors lead to changes in the muscle circadian transcriptome, which includes genes involved in metabolism, proteolysis, and xenobiotic detoxification. Moreover, a skeletal muscle-specific increase in timeless expression extends lifespan and recapitulates some of the transcriptional and circadian changes that differentiate the long-lived from the parental strains. Altogether, these findings indicate that the muscle circadian clock is important for longevity and that circadian gene variants contribute to the evolutionary divergence in longevity across populations.


Asunto(s)
Factores de Transcripción ARNTL/genética , Relojes Circadianos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma de los Insectos , Longevidad/genética , Músculo Esquelético/metabolismo , Proteínas Circadianas Period/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Evolución Biológica , Ritmo Circadiano/genética , ADN Intergénico/genética , ADN Intergénico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Genética de Población , Genómica , Músculo Esquelético/crecimiento & desarrollo , Proteínas Circadianas Period/metabolismo , Polimorfismo Genético , Transcriptoma , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA