Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 39: 101803, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39175664

RESUMEN

GRB2, or Growth Factor Receptor-Bound Protein 2, is a pivotal adaptor protein in intracellular signal transduction pathways, particularly within receptor tyrosine kinase (RTK) signaling cascades. Its crystal structure reveals a modular architecture comprising a single Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains, facilitating dynamic interactions critical for cellular signaling. While SH2 domains recognize phosphorylated tyrosines, SH3 domains bind proline-rich sequences, enabling GRB2 to engage with various downstream effectors. Folding and binding studies of GRB2 in its full-length form and isolated domains highlight a complex interplay between its protein-protein interaction domains on the folding energy landscape and in driving its function. Being at the crosslink of many key molecular pathways in the cell, GRB2 possesses a role in cancer pathogenesis, particularly in mediating the Ras-mitogen activated protein kinase (MAPK) pathway. Thus, pharmacological targeting of GRB2 domains is a promising field in cancer therapy, with efforts focused on disrupting protein-protein interactions. However, the dynamic interplay driving GRB2 function suggests the presence of allosteric sites at the interface between domains that could be targeted to modulate the binding properties of its constituent domains. We propose that the analysis of GRB2 proteins from other species may provide additional insights to make the allosteric pharmacological targeting of GRB2 a more feasible strategy.

2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928272

RESUMEN

The SH2 domains of SHP2 play a crucial role in determining the function of the SHP2 protein. While the folding and binding properties of the isolated NSH2 and CSH2 domains have been extensively studied, there is limited information about the tandem SH2 domains. This study aims to elucidate the folding and binding kinetics of the NSH2-CSH2 tandem domains of SHP2 through rapid kinetic experiments, complementing existing data on the isolated domains. The results indicate that while the domains generally fold and unfold independently, acidic pH conditions induce complex scenarios involving the formation of a misfolded intermediate. Furthermore, a comparison of the binding kinetics of isolated NSH2 and CSH2 domains with the NSH2-CSH2 tandem domains, using peptides that mimic specific portions of Gab2, suggests a dynamic interplay between NSH2 and CSH2 in binding Gab2 that modulate the microscopic association rate constant of the binding reaction. These findings, discussed in the context of previous research on the NSH2 and CSH2 domains, enhance our understanding of the function of the SH2 domain tandem of SHP2.


Asunto(s)
Unión Proteica , Pliegue de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Dominios Homologos src , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Concentración de Iones de Hidrógeno , Cinética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química
3.
J Biol Chem ; 300(4): 107129, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432639

RESUMEN

The adaptor protein Grb2, or growth factor receptor-bound protein 2, possesses a pivotal role in the transmission of fundamental molecular signals in the cell. Despite lacking enzymatic activity, Grb2 functions as a dynamic assembly platform, orchestrating intracellular signals through its modular structure. This study delves into the energetic communication of Grb2 domains, focusing on the folding and binding properties of the C-SH3 domain linked to its neighboring SH2 domain. Surprisingly, while the folding and stability of C-SH3 remain robust and unaffected by SH2 presence, significant differences emerge in the binding properties when considered within the tandem context compared with isolated C-SH3. Through a double mutant cycle analysis, we highlighted a subset of residues, located at the interface with the SH2 domain and far from the binding site, finely regulating the binding of a peptide mimicking a physiological ligand of the C-SH3 domain. Our results have mechanistic implications about the mechanisms of specificity of the C-SH3 domain, indicating that the presence of the SH2 domain optimizes binding to its physiological target, and emphasizing the general importance of considering supramodular multidomain protein structures to understand the functional intricacies of protein-protein interaction domains.


Asunto(s)
Proteína Adaptadora GRB2 , Unión Proteica , Pliegue de Proteína , Dominios Homologos src , Humanos , Sitios de Unión , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/genética , Modelos Moleculares , Estructura Terciaria de Proteína
4.
J Mol Biol ; 436(10): 168555, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552947

RESUMEN

The funneled energy landscape theory suggests that the folding pathway of homologous proteins should converge at the late stages of folding. In this respect, proteins displaying a broad energy landscape for folding are particularly instructive, allowing inferring both the early, intermediate and late stages of folding. In this paper we explore the folding mechanisms of human frataxin, an essential mitochondrial protein linked to the neurodegenerative disorder Friedreich's ataxia. Building upon previous studies on the yeast homologue, the folding pathway of human frataxin is thoroughly examined, revealing a mechanism implying the presence of a broad energy barrier, reminiscent of the yeast counterpart. Through an extensive site-directed mutagenesis, we employed a Φ -value analysis to map native-like contacts in the folding transition state. The presence of a broad energy barrier facilitated the exploration of such contacts in both early and late folding events. We compared results from yeast and human frataxin providing insights into the impact of native topology on the folding mechanism and elucidating the properties of the underlying free energy landscape. The findings are discussed in the context of the funneled energy landscape theory of protein folding.


Asunto(s)
Frataxina , Pliegue de Proteína , Humanos , Frataxina/química , Frataxina/genética , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Termodinámica
5.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139193

RESUMEN

Protein-protein interactions play crucial roles in a wide range of biological processes, including metabolic pathways, cell cycle progression, signal transduction, and the proteasomal system. For PPIs to fulfill their biological functions, they require the specific recognition of a multitude of interacting partners. In many cases, however, protein-protein interaction domains are capable of binding different partners in the intracellular environment, but they require precise regulation of the binding events in order to exert their function properly and avoid misregulation of important molecular pathways. In this work, we focused on the MATH domain of the E3 Ligase adaptor protein SPOP in order to decipher the molecular features underlying its interaction with two different peptides that mimic its physiological partners: Puc and MacroH2A. By employing stopped-flow kinetic binding experiments, together with extensive site-directed mutagenesis, we addressed the roles of specific residues, some of which, although far from the binding site, govern these transient interactions. Our findings are compatible with a scenario in which the binding of the MATH domain with its substrate is characterized by a fine energetic network that regulates its interactions with different ligands. Results are briefly discussed in the context of previously existing work regarding the MATH domain.


Asunto(s)
Tiopronina , Ubiquitina-Proteína Ligasas , Tiopronina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Histonas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ingeniería de Proteínas , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...