Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Neurosci ; 23(1): 71, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451089

RESUMEN

BACKGROUND: Calcium imaging is a powerful technique for recording cellular activity across large populations of neurons. However, analysis methods capable of single-cell resolution in cultured neurons, especially for cultures derived from human induced pluripotent stem cells (hiPSCs), are lacking. Existing methods lack scalability to accommodate high-throughput comparisons between multiple lines, across developmental timepoints, or across pharmacological manipulations. RESULTS: To address this need we developed CaPTure, a scalable, automated Ca2+ imaging analysis pipeline ( https://github.com/LieberInstitute/CaPTure ). CaPTuredetects neurons, classifies and quantifies spontaneous activity, quantifies synchrony metrics, and generates cell- and network-specific metrics that facilitate phenotypic discovery. The method is compatible with parallel processing on computing clusters without requiring significant user input or parameter modification. CONCLUSION: CaPTure allows for rapid assessment of neuronal activity in cultured cells at cellular resolution, rendering it amenable to high-throughput screening and phenotypic discovery. The platform can be applied to both human- and rodent-derived neurons and is compatible with many imaging systems.


Asunto(s)
Calcio , Células Madre Pluripotentes Inducidas , Humanos , Neuronas , Procesamiento de Imagen Asistido por Computador , Línea Celular
2.
Brain Stimul ; 15(2): 427-433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35183789

RESUMEN

BACKGROUND: Electroconvulsive therapy (ECT) efficacy is hypothesized to depend on induction of molecular and cellular events that trigger neuronal plasticity. Investigating how electroconvulsive seizures (ECS) impact plasticity in animal models can help inform our understanding of basic mechanisms by which ECT relieves symptoms of depression. ECS-induced plasticity is associated with differential expression of unique isoforms encoding the neurotrophin, brain-derived neurotrophic factor (BDNF). HYPOTHESIS: We hypothesized that cells expressing the Bdnf exon 1-containing isoform are important for ECS-induced structural plasticity in the piriform cortex, a highly epileptogenic region that is responsive to ECS. METHODS: We selectively labeled Bdnf exon 1-expressing neurons in mouse piriform cortex using Cre recombinase dependent on GFP technology (CRE-DOG). We then quantified changes in dendrite morphology and density of Bdnf exon 1-expressing neurons. RESULTS: Loss of promoter I-derived BDNF caused changes in spine density and morphology in Bdnf exon 1-expressing neurons following ECS. CONCLUSIONS: Promoter I-derived Bdnf is required for ECS-induced dendritic structural plasticity in Bdnf exon 1-expressing neurons.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Terapia Electroconvulsiva , Plasticidad Neuronal , Corteza Piriforme , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones , Neuronas/metabolismo , Corteza Piriforme/metabolismo , Regiones Promotoras Genéticas , Convulsiones/etiología
3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35017298

RESUMEN

Neurons derived from human induced pluripotent stem cells (hiPSCs) have been used to model basic cellular aspects of neuropsychiatric disorders, but the relationship between the emergent phenotypes and the clinical characteristics of donor individuals has been unclear. We analyzed RNA expression and indices of cellular function in hiPSC-derived neural progenitors and cortical neurons generated from 13 individuals with high polygenic risk scores (PRSs) for schizophrenia (SCZ) and a clinical diagnosis of SCZ, along with 15 neurotypical individuals with low PRS. We identified electrophysiological measures in the patient-derived neurons that implicated altered Na+ channel function, action potential interspike interval, and gamma-aminobutyric acid-ergic neurotransmission. Importantly, electrophysiological measures predicted cardinal clinical and cognitive features found in these SCZ patients. The identification of basic neuronal physiological properties related to core clinical characteristics of illness is a potentially critical step in generating leads for novel therapeutics.


Asunto(s)
Cognición/fisiología , Fenómenos Electrofisiológicos , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Esquizofrenia/fisiopatología , Animales , Línea Celular , Reprogramación Celular , Corteza Cerebral/patología , Humanos , Activación del Canal Iónico , Cinética , Masculino , Fenotipo , Ratas , Esquizofrenia/diagnóstico , Canales de Sodio/metabolismo
4.
Mol Psychiatry ; 24(8): 1235-1246, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30705426

RESUMEN

The TCF4 gene is the subject of numerous and varied investigations of it's role in the genesis of neuropsychiatric disease. The gene has been identified as the cause of Pitt-Hopkins syndrome (PTHS) and it has been implicated in various other neuropsychiatric diseases, including schizophrenia, depression, and autism. However, the precise molecular mechanisms of the gene's involvement in neurogenesis, particularly, corticogenesis, are not well understood. Here, we present data showing that TCF4 is expressed in a region-specific manner in the radial glia and stem cells of transient embryonic zones at early gestational ages in both humans and mice. TCF4 haploinsufficiency mice exhibit a delay in neuronal migration, and a significant increase in the number of upper-layer cortical neurons, as well as abnormal dendrite and synapse formation. Our research also reveals that TCF3 up-regulates Tcf4 by binding to the specific "E-box" and its flank sequence in intron 2 of the Tcf4 gene. Additionally, our transcriptome study substantiates that Tcf4 transcriptional function is essential for locomotion, cognition, and learning. By activating expression of TCF4 in the regulation of neuronal proliferation and migration to the overlaying neocortex and subsequent differentiation leading to laminar formation TCF4 fulfills its normal function, but if not, abnormalities such as those reported here result. These findings provide new insight into the specific roles of Tcf4 molecular pathway in neocortical development and their relevance in the pathogenesis of neuropsychiatric diseases.


Asunto(s)
Malformaciones del Desarrollo Cortical/genética , Trastornos Mentales/genética , Factor de Transcripción 4/genética , Animales , Modelos Animales de Enfermedad , Células Ependimogliales/metabolismo , Femenino , Redes Reguladoras de Genes/genética , Haploinsuficiencia , Humanos , Masculino , Ratones , Ratones Noqueados , Neurogénesis/fisiología , Neuronas/metabolismo , Fenotipo , Esquizofrenia/genética , Factor de Transcripción 4/metabolismo , Factores de Transcripción/genética
5.
J Neurosci ; 37(43): 10516-10527, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-28951451

RESUMEN

Transcription factor 4 (TCF4 also known as ITF2 or E2-2) is a basic helix-loop-helix (bHLH) protein associated with Pitt-Hopkins syndrome, intellectual disability, and schizophrenia (SCZ). Here, we show that TCF4-dependent transcription in cortical neurons cultured from embryonic rats of both sexes is induced by neuronal activity via soluble adenylyl cyclase and protein kinase A (PKA) signaling. PKA phosphorylates TCF4 directly and a PKA phosphorylation site in TCF4 is necessary for its transcriptional activity in cultured neurons and in the developing brain in vivo We also demonstrate that Gadd45g (growth arrest and DNA damage inducible gamma) is a direct target of neuronal-activity-induced, TCF4-dependent transcriptional regulation and that TCF4 missense variations identified in SCZ patients alter the transcriptional activity of TCF4 in neurons. This study identifies a new role for TCF4 as a neuronal-activity-regulated transcription factor, offering a novel perspective on the association of TCF4 with cognitive disorders.SIGNIFICANCE STATEMENT The importance of the basic helix-loop-helix transcription factor transcription factor 4 (TCF4) in the nervous system is underlined by its association with common and rare cognitive disorders. In the current study, we show that TCF4-controlled transcription in primary cortical neurons is induced by neuronal activity and protein kinase A. Our results support the hypotheses that dysregulation of neuronal-activity-dependent signaling plays a significant part in the etiology of neuropsychiatric and neurodevelopmental disorders.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Discapacidad Intelectual/metabolismo , Neuronas/metabolismo , Esquizofrenia/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de Unión al ADN/genética , Femenino , Células HEK293 , Hipocampo/metabolismo , Humanos , Discapacidad Intelectual/genética , Masculino , Ratas , Ratas Sprague-Dawley , Esquizofrenia/genética , Factor de Transcripción 4 , Factores de Transcripción/genética
6.
Rare Dis ; 4(1): e1220468, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28032012

RESUMEN

The clinically pleiotropic gene, Transcription Factor 4 (TCF4), is a broadly expressed basic helix-loop-helix (bHLH) transcription factor linked to multiple neurodevelopmental disorders, including schizophrenia, 18q deletion syndrome, and Pitt Hopkins syndrome (PTHS). In vivo suppression of Tcf4 by shRNA or mutation by CRISPR/Cas9 in the developing rat prefrontal cortex resulted in attenuated action potential output. To explain this intrinsic excitability deficit, we demonstrated that haploinsufficiency of TCF4 lead to the ectopic expression of two ion channels, Scn10a and Kcnq1. These targets of TCF4 regulation were identified through molecular profiling experiments that used translating ribosome affinity purification to enrich mRNA from genetically manipulated neurons. Using a mouse model of PTHS (Tcf4+/tr), we observed a similar intrinsic excitability deficit, however the underlying mechanism appeared slightly different than our rat model - as Scn10a expression was similarly increased but Kcnq1 expression was decreased. Here, we show that the truncated TCF4 protein expressed in our PTHS mouse model binds to wild-type TCF4 protein, and we suggest the difference in Kcnq1 expression levels between these two rodent models appears to be explained by a dominant-negative function of the truncated TCF4 protein. Despite the differences in the underlying molecular mechanisms, we observed common underlying intrinsic excitability deficits that are consistent with ectopic expression of Scn10a. The converging molecular function of TCF4 across two independent rodent models indicates SCN10a is a potential therapeutic target for Pitt-Hopkins syndrome.

7.
Neuron ; 90(1): 43-55, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26971948

RESUMEN

Transcription Factor 4 (TCF4) is a clinically pleiotropic gene associated with schizophrenia and Pitt-Hopkins syndrome (PTHS). To gain insight about the neurobiology of TCF4, we created an in vivo model of PTHS by suppressing Tcf4 expression in rat prefrontal neurons immediately prior to neurogenesis. This cell-autonomous genetic insult attenuated neuronal spiking by increasing the afterhyperpolarization. At the molecular level, using a novel technique called iTRAP that combined in utero electroporation and translating ribosome affinity purification, we identified increased translation of two ion channel genes, Kcnq1 and Scn10a. These ion channel candidates were validated by pharmacological rescue and molecular phenocopy. Remarkably, similar excitability deficits were observed in prefrontal neurons from a Tcf4(+/tr) mouse model of PTHS. Thus, we identify TCF4 as a regulator of neuronal intrinsic excitability in part by repression of Kcnq1 and Scn10a and suggest that this molecular function may underlie pathophysiology associated with neuropsychiatric disorders.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Proteínas de Unión al ADN/genética , Hiperventilación/genética , Discapacidad Intelectual/genética , Canal de Potasio KCNQ1/genética , Canal de Sodio Activado por Voltaje NAV1.8/genética , Corteza Prefrontal/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Electroporación , Facies , Femenino , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Ratones , Técnicas de Placa-Clamp , Corteza Prefrontal/embriología , Embarazo , ARN Interferente Pequeño , Ratas , Ratas Wistar , Esquizofrenia/genética , Factor de Transcripción 4
8.
Synapse ; 64(3): 191-9, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19862684

RESUMEN

Exposure of the developing brain to a wide variety of drugs of abuse (e.g., stimulants, opioids, ethanol, etc.) can induce life-long changes in behavior and neural circuitry. However, the long-term effects of exposure to therapeutic, psychotropic drugs have only recently begun to be appreciated. Antipsychotic drugs are little studied in this regard. Here, we quantitatively analyzed dendritic architecture in adult mice treated with paradigmatic typical- (haloperidol) or atypical (olanzapine) antipsychotic drugs at developmental stages corresponding to fetal or fetal plus early childhood stages in humans. In layer 3 pyramidal cells of the medial and orbital prefrontal cortices and the parietal cortex and in spiny neurons of the core of the nucleus accumbens, both drugs induced significant changes (predominantly reductions) in the amount and complexity of dendritic arbor and the density of dendritic spines. The drug-induced plasticity of dendritic architecture suggests changes in patterns of neuronal connectivity in multiple brain regions that are likely to be functionally significant.


Asunto(s)
Benzodiazepinas/farmacología , Forma de la Célula/efectos de los fármacos , Dendritas/efectos de los fármacos , Haloperidol/farmacología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Análisis de Varianza , Animales , Antipsicóticos/farmacología , Femenino , Lóbulo Frontal/efectos de los fármacos , Ratones , Neuronas/citología , Núcleo Accumbens/efectos de los fármacos , Olanzapina , Lóbulo Parietal/efectos de los fármacos , Tinción con Nitrato de Plata , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...