Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37464837

RESUMEN

Among inflammatory cytokines, Interleukin-6 (IL-6) is one of the major activators of acute phase response and is also involved in immune response and cancer progression. IL-6 is involved in the up-regulation of enzymes and growth factors acting on the extracellular matrix (ECM) remodelling components in physio-pathological processes. IL-6 enhances the expression of metalloproteases (MMP-)2/9, enzymes that play a key role in ECM degradation and therefore contribute to the process of tumor metastasis. To counteract and/or prevent cancer diseases, many efforts have been devoted to the identification of factors able to inhibit the IL-6-dependent MMP-9/2 expression. Recently, diet polyphenols have been identified as molecules manifesting anti-inflammatory and anti-cancer properties beyond their well-known capacity to promote health on the basis of their antioxidant effects. This review summarizes the recent advances in this field, focusing on the protective effects exerted by diet polyphenols on the proliferation and invasiveness of tumor cells, with specific emphasis on the ability of these molecules to inhibit the IL-6-dependent upregulation of MMP-2/9.

2.
Biomedicines ; 11(5)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37239128

RESUMEN

Activating transcription factor 6α (ATF6α) is an endoplasmic reticulum protein known to participate in unfolded protein response (UPR) during ER stress in mammals. Herein, we show that in mouse C2C12 myoblasts induced to differentiate, ATF6α is the only pathway of the UPR activated. ATF6α stimulation is p38 MAPK-dependent, as revealed by the use of the inhibitor SB203580, which halts myotube formation and, at the same time, impairs trafficking of ATF6α, which accumulates at the cis-Golgi without being processed in the p50 transcriptional active form. To further evaluate the role of ATF6α, we knocked out the ATF6α gene, thus inhibiting the C2C12 myoblast from undergoing myogenesis, and this occurred independently from p38 MAPK activity. The expression of exogenous ATF6α in knocked-out ATF6α cells recover myogenesis, whereas the expression of an ATF6α mutant in the p38 MAPK phosphorylation site (T166) was not able to regain myogenesis. Genetic ablation of ATF6α also prevents the exit from the cell cycle, which is essential for muscle differentiation. Furthermore, when we inhibited differentiation by the use of dexamethasone in C2C12 cells, we found inactivation of p38 MAPK and, consequently, loss of ATF6α activity. All these findings suggest that the p-p38 MAPK/ATF6α axis, in pathophysiological conditions, regulates myogenesis by promoting the exit from the cell cycle, an essential step to start myoblasts differentiation.

3.
Biomedicines ; 10(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36009556

RESUMEN

Parkinson's disease (PD) represents one of the most common neurodegenerative disorders, characterized by a dopamine (DA) deficiency in striatal synapses and misfolded toxic α-synuclein aggregates with concomitant cytotoxicity. In this regard, the misfolded proteins accumulation in neurodegenerative disorders induces a remarkable perturbations of endoplasmic reticulum (ER) homeostasis leading to persistent ER stress, which in turn, effects protein synthesis, modification, and folding quality control. A large body of evidence suggests that natural products target the ER stress signaling pathway, exerting a potential action in cancers, diabetes, cardiovascular and neurodegenerative diseases. This study aims to assess the neuroprotective effect of cocoa extract and its purified fractions against a cellular model of Parkinson's disease represented by 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma. Our findings demonstrate, for the first time, the ability of cocoa to specifically targets PERK sensor, with significant antioxidant and antiapoptotic activities as both crude and fractioning extracts. In addition, cocoa also showed antiapoptotic properties in 3D cell model and a notable ability to inhibit the accumulation of α-synuclein in 6-OHDA-induced cells. Overall, these results indicate that cocoa exerts neuroprotective effects suggesting a novel possible strategy to prevent or, at least, mitigate neurodegenerative disorders, such as PD.

4.
Molecules ; 26(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34885656

RESUMEN

Among matrix metalloproteinases (MMPs), MMP-9/2 are key enzymes involved in the proteolysis of extracellular matrices in the inflammatory process and in cancer. Since MMP-9/2 expression levels, activity, and secretion is up-regulated during inflammation in response to pro-inflammatory cytokines, such as interleukin-6 (IL-6), many efforts have been devoted to identifying factors that could inhibit the IL-6-induced MMP-9/2 expression. Up to now, several reports indicated that polyphenols from fruits and vegetables are among the major components of health promotion for their antioxidant properties and also for their anti-inflammatory and anti-cancer agents. Among plant derived polyphenols, lemon (Citrus limon) peel extract (LPE) shows anti-cancer properties in various cancer types. In our previous work, we demonstrated that LPE can reduce IL-6-induced migration/invasiveness and MMP-9/2 up-regulation in some gastric cancer cell lines. This study aims to exploit the anti-cancer properties of LPE using an in vitro system model of inflammation, consisting of IL-6-exposed human primary colon cancer cells. We first analyzed the effect of LPE on IL-6-induced cell migration and invasiveness by wound healing and Boyden chamber assay, respectively. The MMP-2 mRNA expression levels and gelatinolytic activity in the cell culture media were determined by q-PCR analysis and gelatin zymography, respectively, and finally, the effects of LPE on IL-6-induced JAK2/STAT3 signaling pathways have been investigated by Western blotting analysis. Our results show that LPE is able to inhibit the IL-6-dependent cell migration and invasiveness associated with the up-regulation of MMP-2 expression levels and that these effects are correlated to the STAT3 phosphorylation in human primary T88 and T93 colon cancer cells.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Citrus/química , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Interleucina-6/farmacología , Metaloproteinasa 2 de la Matriz/metabolismo , Extractos Vegetales/farmacología , Polifenoles/farmacología , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Interleucina-6/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Invasividad Neoplásica , Proteínas Recombinantes/farmacología
5.
Front Cell Dev Biol ; 9: 641194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842465

RESUMEN

In the last decades, the endoplasmic reticulum (ER) has emerged as a key coordinator of cellular homeostasis, thanks to its physical interconnection to almost all intracellular organelles. In particular, an intense and mutual crosstalk between the ER and mitochondria occurs at the mitochondria-ER contacts (MERCs). MERCs ensure a fine-tuned regulation of fundamental cellular processes, involving cell fate decision, mitochondria dynamics, metabolism, and proteostasis, which plays a pivotal role in the tumorigenesis and therapeutic response of cancer cells. Intriguingly, recent studies have shown that different components of the unfolded protein response (UPR) machinery, including PERK, IRE1α, and ER chaperones, localize at MERCs. These proteins appear to exhibit multifaceted roles that expand beyond protein folding and UPR transduction and are often related to the control of calcium fluxes to the mitochondria, thus acquiring relevance to cell survival and death. In this review, we highlight the novel functions played by PERK, IRE1α, and ER chaperones at MERCs focusing on their impact on tumor development.

6.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466604

RESUMEN

In this study, we explored the ability of Annurca apple flesh polyphenol extract (AFPE) to affect the activity of key enzymes involved in neurodegenerative disorders-in particular, Acetyl- and Butirryl-cholinesterases, and type A and B monoamine oxidase. The effect of AFPE on enzyme activity was analyzed by in vitro enzyme assays, and the results showed concentration-dependent enzyme inhibition, with IC50 values corresponding to 859 ± 18 µM and 966 ± 72 µM for AChE and BuChE respectively, and IC50 corresponding to 145 ± 3 µM and 199 ± 7 µM for MAO-A and MAO-B, respectively, with a preference for MAO-A. Moreover, in this concentration range, AFPE did not affect the viability of human neuroblastoma SH-SY5Y and fibroblast BJ-5ta cell lines, as determined by an MTT assay. In conclusion, our results demonstrate that AFPE shows the new biological properties of inhibiting the activity of enzymes that are involved in brain functions, neurodegenerative disorders, and aging.

7.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003361

RESUMEN

The ent-kaurane diterpene oridonin was reported to inhibit cell migration and invasion in several experimental models. However, the process by which this molecule exerts its anti-metastatic action has not been yet elucidated. In this article, we have investigated the anti-metastatic activity of Oridonin and of one homolog, Irudonin, with the aim to shed light on the molecular mechanisms underlying the biological activity of these ent-kaurane diterpenes. Cell-based experiments revealed that both compounds are able to affect differentiation and cytoskeleton organization in mouse differentiating myoblasts, but also to impair migration, invasion and colony formation ability of two different metastatic cell lines. Using a compound-centric proteomic approach, we identified some potential targets of the two bioactive compounds among cytoskeletal proteins. Among them, Ezrin, a protein involved in the actin cytoskeleton organization, was further investigated. Our results confirmed the pivotal role of Ezrin in regulating cell migration and invasion, and indicate this protein as a potential target for new anti-cancer therapeutic approaches. The interesting activity profile, the good selectivity towards cancer cells, and the lower toxicity with respect to Oridonin, all suggest that Irudonin is a very promising anti-metastatic agent.


Asunto(s)
Proliferación Celular/genética , Proteínas del Citoesqueleto/genética , Neoplasias/genética , Proteómica , Citoesqueleto de Actina/genética , Animales , Movimiento Celular/efectos de los fármacos , Diterpenos/farmacología , Diterpenos de Tipo Kaurano/farmacología , Humanos , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Neoplasias/tratamiento farmacológico , Neoplasias/patología
8.
Biomolecules ; 9(12)2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817563

RESUMEN

Among plant polyphenols, lemon peels extract (LPE) from the residues of the industrial processing of lemon (Citruslimon) shows anti-proliferative properties in cancer cells and anticholinesterase activity. In this study, we analyze the anti-cancer properties of LPE on migration and invasiveness in MKN-28 and AGS human gastric cancer cell lines either in the absence or presence of the pro-inflammatory cytokine IL-6. We find that the pretreatment with non-cytotoxic concentrations (0.5-1 µg/ml of gallic acid equivalent) of LPE inhibits interleukin-6 (IL-6)-induced cell migration and invasiveness in MKN-28 and AGS cells, as analyzed by wound and matrigel assays. Pretreatment with LPE is able to prevent either IL-6-induced matrix metalloproteinases (MMP)-9/2 activity, as assessed by gel zymography, or mRNA and protein MMP-9/2 expression, as evaluated by qPCR and Western blotting analysis, respectively. These LPE effects are associated with an IL-6-dependent STAT3 signaling pathway in MKN-28 and AGS cells. Furthermore, LPE shows acetylcholinesterase inhibitory activity when assayed by the Ellman method. In conclusion, our results demonstrate that LPE reduces the invasiveness of gastric MKN-28 and AGS cancer cells through the reduction of IL-6-induced MMP-9/2 up-regulation. Therefore, these data suggest that LPE exerts a protective role against the metastatic process in gastric cancer.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Metaloproteinasa 2 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/biosíntesis , Extractos Vegetales/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Acetilcolinesterasa/metabolismo , Adenocarcinoma/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citrus , Interacciones de Hierba-Droga , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacología , Invasividad Neoplásica/prevención & control , Metástasis de la Neoplasia/tratamiento farmacológico , Polifenoles/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/metabolismo
9.
Viruses ; 11(9)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31505755

RESUMEN

T-cell development in the thymus is a complex and highly regulated process, involving a wide variety of cells and molecules which orchestrate thymocyte maturation into either CD4+ or CD8+ single-positive (SP) T cells. Here, we briefly review the process regulating T-cell differentiation, which includes the latest advances in this field. In particular, we highlight how, starting from a pool of hematopoietic stem cells in the bone marrow, the sequential action of transcriptional factors and cytokines dictates the proliferation, restriction of lineage potential, T-cell antigen receptors (TCR) gene rearrangements, and selection events on the T-cell progenitors, ultimately leading to the generation of mature T cells. Moreover, this review discusses paradigmatic examples of viral infections affecting the thymus that, by inducing functional changes within this lymphoid gland, consequently influence the behavior of peripheral mature T-lymphocytes.


Asunto(s)
Timo/crecimiento & desarrollo , Virosis/virología , Animales , Diferenciación Celular , Humanos , Activación de Linfocitos , Linfocitos T/citología , Linfocitos T/inmunología , Timo/inmunología , Timo/virología , Virosis/inmunología
10.
Arch Biochem Biophys ; 653: 39-49, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29963999

RESUMEN

Mannose-binding lectin (MBL)-Associated Serine Proteases (MASP)-1 and 3, key enzymes in the lectin complement pathway of innate immune response, are also expressed in glioma cell lines. We investigated MASP-1 and MASP-3 expression during dibutyryl cyclic AMP (dbcAMP)- or Interleukin-6 (rIL-6)-induced astrocytic differentiation of C6 glioma cells. Our results demonstrate that C6 cells express basal levels of MASP-1 and MASP-3 and following exposure to dbcAMP or IL-6, a consistent MASP-1 and MASP-3 mRNA up-regulation was found, with a behavior similar to that showed by the fibrillary acidic protein (GFAP). Furthermore, in cell conditioned media, rIL-6 stimulated MASP-3 secretion which reached levels similar to those obtained by dbcAMP treatment. Moreover, the detection of a 46-kDa MASP-3 suggested its processing to the mature form in the extracellular cell medium. Interestingly, the H89 PKA inhibitor, mostly affected dbcAMP-induced MASP-1 and MASP-3 mRNA levels, compared to that of rIL-6, suggesting that cAMP/PKA pathway contributes to MASP-1 and MASP-3 up-regulation. MASP-1 and MASP-3 expression increase was concomitant with dbcAMP- or rIL-6-induced phosphorylation of STAT3. Our findings suggest that the increase in intracellular cAMP concentration or rIL-6 stimulation can play a role in innate immunity enhancing MASP-1 and MASP-3 expression level in C6 glioma cells.


Asunto(s)
Neoplasias Encefálicas/enzimología , Bucladesina/farmacología , Glioma/enzimología , Interleucina-6/farmacología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Glioma/inmunología , Glioma/patología , Inmunidad Innata/efectos de los fármacos , Isoquinolinas/farmacología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/metabolismo , Ratas , Proteínas Recombinantes/farmacología , Factor de Transcripción STAT3/metabolismo , Sulfonamidas/farmacología
11.
Oncotarget ; 7(48): 79670-79687, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27835895

RESUMEN

Colon cancer is one of the leading causes of cancer-related death worldwide and the therapy with 5-fluorouracil (5-FU) is mainly limited due to resistance. Recently, we have demonstrated that nucleolar stress upon 5-FU treatment leads to the activation of ribosome-free rpL3 (L3) as proapoptotic factor. In this study, we analyzed L3 expression profile in colon cancer tissues and demonstrated that L3 mRNA amount decreased with malignant progression and the intensity of its expression was inversely related to tumor grade and Bcl-2/Bax ratio. With the aim to develop a combined therapy of 5-FU plus plasmid encoding L3 (pL3), we firstly assessed the potentiation of the cytotoxic effect of 5-FU on colon cancer cells by L3. Next, 10 µM 5-FU and 2 µg of pL3 were encapsulated in biocompatible nanoparticles (NPs) chemically conjugated with HA to achieve active tumor-targeting ability in CD44 overexpressing cancer cells. We showed the specific intracellular accumulation of NPs in cells and a sustained release for 5-FU and L3. Analysis of cytotoxicity and apoptotic induction potential of combined NPs clearly showed that the 5-FU plus L3 were more effective in inducing apoptosis than 5-FU or L3 alone. Furthermore, we show that the cancer-specific chemosensitizer effect of combined NPs may be dependent on L3 ability to affect 5-FU efflux by controlling P-gp (P-glycoprotein) expression. These results led us to propose a novel combined therapy with the use of 5-FU plus L3 in order to establish individualized therapy by examining L3 profiles in tumors to yield a better clinical outcomes.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Portadores de Fármacos , Fluorouracilo/farmacología , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Nanopartículas , Polímeros/química , Proteínas Ribosómicas/genética , Proteína p53 Supresora de Tumor/deficiencia , Adulto , Anciano , Anciano de 80 o más Años , Antimetabolitos Antineoplásicos/química , Movimiento Celular/efectos de los fármacos , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Preparaciones de Acción Retardada , Relación Dosis-Respuesta a Droga , Composición de Medicamentos , Femenino , Fluorouracilo/química , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Receptores de Hialuranos/metabolismo , Masculino , Persona de Mediana Edad , Proteína Ribosomal L3 , Proteínas Ribosómicas/biosíntesis , Factores de Tiempo , Transfección , Proteína p53 Supresora de Tumor/genética
12.
Sci Rep ; 6: 31491, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27509878

RESUMEN

The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-ß-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser(227) following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders.


Asunto(s)
Cistationina betasintasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , Receptores Muscarínicos/metabolismo , Urotelio/fisiología , Carbacol/farmacología , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Cistationina betasintasa/química , Humanos , Antagonistas Muscarínicos/farmacología , Contracción Muscular/efectos de los fármacos , Fosforilación , Serina/metabolismo , Urotelio/efectos de los fármacos , Urotelio/metabolismo
13.
Oncotarget ; 7(31): 50333-50348, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27385096

RESUMEN

Recent findings revealed in cancer cells novel stress response pathways, which in response to many chemotherapeutic drugs causing nucleolar stress, will function independently from tumor protein p53 (p53) and still lead to cell cycle arrest and/or apoptosis. Since it is known that most cancers lack functional p53, it is of great interest to explore these emerging molecular mechanisms. Here, we demonstrate that nucleolar stress induced by 5-fluorouracil (5-FU) in colon cancer cells devoid of p53 leads to the activation of ribosomal protein L3 (rpL3) as proapoptotic factor. rpL3, as ribosome-free form, is a negative regulator of cystathionine-ß-synthase (CBS) expression at transcriptional level through a molecular mechanism involving Sp1. The rpL3-CBS association affects CBS stability and, in addition, can trigger CBS translocation into mitochondria. Consequently apoptosis will be induced through the mitochondrial apoptotic cell death pathway characterized by an increased ratio of Bax to Bcl-2, cytochrome c release and subsequent caspase activation. It is noteworthy that silencing of CBS is associated to a strong increase of 5-FU-mediated inhibition of cell migration and proliferation. These data reveal a novel mechanism to accomplish p53-independent apoptosis and suggest a potential therapeutic approach aimed at upregulating rpL3 for treating cancers lacking p53.


Asunto(s)
Apoptosis , Neoplasias del Colon/metabolismo , Cistationina betasintasa/metabolismo , Fluorouracilo/farmacología , Genes p53 , Mitocondrias/metabolismo , Proteínas Ribosómicas/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Caspasas/metabolismo , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Citocromos c/metabolismo , Activación Enzimática , Células HCT116 , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína Ribosomal L3 , Ribosomas/metabolismo , Factor de Transcripción Sp1/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo
14.
Int J Pharm ; 511(1): 127-139, 2016 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-27374195

RESUMEN

With the aim to develop alternative therapeutic tools for the treatment of resistant cancers, here we propose targeted Pluronic(®) P123/F127 mixed micelles (PMM) delivering niclosamide (NCL) as a repositioning strategy to treat multidrug resistant non-small lung cancer cell lines. To build multifunctional PMM for targeting and imaging, Pluronic(®) F127 was conjugated with biotin, while Pluronic(®) P123 was fluorescently tagged with rhodamine B, in both cases at one of the two hydroxyl end groups. This design intended to avoid any interference of rhodamine B on biotin exposition on PMM surface, which is a key fundamental for cell trafficking studies. Biotin-decorated PMM were internalized more efficiently than non-targeted PMM in A549 lung cancer cells, while very low internalization was found in NHI3T3 normal fibroblasts. Biotin-decorated PMM entrapped NCL with good efficiency, displayed sustained drug release in protein-rich media and improved cytotoxicity in A549 cells as compared to free NCL (P<0.01). To go in depth into the actual therapeutic potential of NCL-loaded PMM, a cisplatin-resistant A549 lung cancer cell line (CPr-A549) was developed and its multidrug resistance tested against common chemotherapeutics. Free NCL was able to overcome chemoresistance showing cytotoxic effects in this cell line ascribable to nucleolar stress, which was associated to a significant increase of the ribosomal protein rpL3 and consequent up-regulation of p21. It is noteworthy that biotin-decorated PMM carrying NCL at low doses demonstrated a significantly higher cytotoxicity than free NCL in CPr-A549. These results point at NCL-based regimen with targeted PMM as a possible second-line chemotherapy for lung cancer showing cisplatin or multidrug resistance.


Asunto(s)
Biotina/administración & dosificación , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares , Niclosamida/administración & dosificación , Poloxaleno/administración & dosificación , Poloxámero/administración & dosificación , Células A549 , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Biotina/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Antineoplásicos/fisiología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Micelas , Células 3T3 NIH , Niclosamida/metabolismo , Poloxaleno/metabolismo , Poloxámero/metabolismo , Proteína Ribosomal L3
15.
Cell Cycle ; 15(1): 41-51, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26636733

RESUMEN

Many chemotherapeutic drugs cause nucleolar stress and p53-independent pathways mediating the nucleolar stress response are emerging. Here, we demonstrate that ribosomal stress induced by Actinomycin D (Act D) is associated to the up-regulation of ribosomal protein L3 (rpL3) and its accumulation as ribosome-free form in lung and colon cancer cell lines devoid of p53. Free rpL3 regulates p21 expression at transcriptional and post-translational levels through a molecular mechanism involving extracellular-signal-regulated kinases1/2 (ERK1/2) and mouse double minute-2 homolog (MDM2). Our data reveal that rpL3 participates to cell response acting as a critical regulator of apoptosis and cell migration. It is noteworthy that silencing of rpL3 abolishes the cytotoxic effects of Act D suggesting that the loss of rpL3 makes chemotherapy drugs ineffective while rpL3 overexpression associates to a strong increase of Act D-mediated inhibition of cell migration. Taking together our results show that the efficacy of Act D chemotherapy depends on rpL3 status revealing new specific targets involved in the molecular pathways activated by Act D in cancers lacking of p53. Hence, the development of treatments aimed at upregulating rpL3 may be beneficial for the treatment of these cancers.


Asunto(s)
Nucléolo Celular/metabolismo , Dactinomicina/toxicidad , Proteínas Ribosómicas/fisiología , Estrés Fisiológico/fisiología , Proteína p53 Supresora de Tumor/deficiencia , Línea Celular Tumoral , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/genética , Supervivencia Celular , Células HCT116 , Humanos , Proteína Ribosomal L3 , Estrés Fisiológico/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética
16.
Biochim Open ; 3: 56-63, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29450132

RESUMEN

Several studies demonstrated a correlation between green tea consumption and a reduced cancer risk. Among different components, green tea polyphenols have been identified as molecules responsible for the beneficial effects showed by the green tea against oxidative stress and cell invasiveness. In this study, we investigated the effects of green tea polyphenol extracts (GTPs) in human gastric MKN-28 cell line. To this aim, we have first evaluated the effect of GTPs on oxidative stress induced cell injury. The pre-treatment with 10-4 M catechin equivalents of GTPs exerts a protective effect on xanthine-xanthine oxidase induced cell cytotoxicity, thus confirming the anti-oxidant properties of GTPs. The effect of GTPs was also extended to the invasive ability of MKN-28 cells stimulated with TNF-α or LPS, as pro-inflammatory factors. Migration and matrigel invasion assays demonstrated that GTPs exposure (10-6 M) prevents the increase in cell invasiveness induced by TNF-α or LPS. Finally, we have analyzed the effect of GTPs on the levels of Matrix Metalloproteinases (MMP)-9/2, whose expression is up-regulated by TNF-α or LPS. Our results indicated that the pre-treatment with GTPs was able to reduce MMP-9/2 expression at both protein and enzyme activity levels in the conditioned media of TNF-α or LPS stimulated MKN-28 cells. In conclusion, our results demonstrated that green tea polyphenol extract reduces the invasiveness of gastric MKN-28 cancer cells through the reduction of TNF-α or LPS induced MMP-9/2 up-regulation. Therefore, these data support the hypothesis that GTPs could exert a protective role against the metastatic process in gastric cancer.

17.
J Nanobiotechnology ; 13: 29, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25888948

RESUMEN

BACKGROUND: Novel polymeric nanoparticles (NPs) specifically designed for delivering chemotherapeutics in the body and aimed at improving treatment activity and selectivity, cover a very relevant area in the field of nanomedicine. Here, we describe how to build a polymer shell of Hyaluronan (HA) and Polyethyleneimine (PEI) on biodegradable NPs of poly(lactic-co-glycolic) acid (PLGA) through electrostatic interactions and to achieve NPs with unique features of sustained delivery of a docetaxel (DTX) drug cargo as well as improved intracellular uptake. RESULTS: A stable PEI or HA/PEI shell could be obtained by careful selection of layering conditions. NPs with exquisite stability in salt and protein-rich media, with size and surface charge matching biological requirements for intravenous injection and endowed with sustained DTX release could be obtained. Cytotoxicity, uptake and activity of both PLGA/PEI/HA and PLGA/PEI NPs were evaluated in CD44(+) (A549) and CD44(-) (Calu-3) lung cancer cells. In fact, PEI-coated NPs can be formed after degradation/dissociation of the surface HA because of the excess hyaluronidases overexpressed in tumour interstitium. There was no statistically significant cytotoxic effect of PLGA/PEI/HA and PLGA/PEI NPs in both cell lines, thus suggesting that introduction of PEI in NP shell was not hampered by its intrinsic toxicity. Intracellular trafficking of NPs fluorescently labeled with Rhodamine (RHO) (RHO-PLGA/PEI/HA and RHO-PLGA/PEI NPs) demonstrated an increased time-dependent uptake only for RHO-PLGA/PEI/HA NPs in A549 cells as compared to Calu-3 cells. As expected, RHO-PLGA/PEI NP uptake in A549 cells was comparable to that observed in Calu-3 cells. RHO-PLGA/PEI/HA NPs internalized into A549 cells showed a preferential perinuclear localization. Cytotoxicity data in A549 cells suggested that DTX delivered through PLGA/PEI/HA NPs exerted a more potent antiproliferative activity than free DTX. Furthermore, DTX-PLGA/PEI NPs, as hypothetical result of hyaluronidase-mediated degradation in tumor interstitium, were still able to improve the cytotoxic activity of free DTX. CONCLUSIONS: Taken together, results lead us to hypothesize that biodegradable NPs coated with a PEI/HA shell represent a very promising system to treat CD44 overexpressing lung cancer. In principle, this novel nanocarrier can be extended to different single drugs and drug combinations taking advantage of the shell and core properties.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/química , Taxoides/administración & dosificación , Antineoplásicos/química , Materiales Biocompatibles/química , Línea Celular/efectos de los fármacos , Docetaxel , Estabilidad de Medicamentos , Colorantes Fluorescentes/farmacocinética , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/química , Ácido Láctico/química , Neoplasias Pulmonares/patología , Nanopartículas/administración & dosificación , Nanopartículas/toxicidad , Nanocáscaras/química , Polietileneimina/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Taxoides/química
18.
Biochim Biophys Acta ; 1843(11): 2631-44, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25072751

RESUMEN

Protease Nexin-1 (PN-1) or Serpine2 is a physiological regulator of extracellular proteases as thrombin and urokinase (uPA) in the brain. Besides, PN-1 is also implicated in some human cancers and further identified as a substrate for Matrix Metalloproteinase (MMP)-9, a key enzyme in tumor invasiveness. Our aim was to study the role of PN-1 in the migration and invasive potential of glioma cells, using the rat C6 glioma cell line as stable clones transfected with pAVU6+27 vector expressing PN-1 short-hairpin RNA. We find that PN-1 knockdown enhanced the in vitro migration and invasiveness of C6 cells which also showed a strong gelatinolytic activity by in situ zymography. PN-1 silencing did not alter prothrombin whereas increased uPA, MMP-9 and MMP-2 expression levels and gelatinolytic activity in a conditioned medium from stable C6 cells. Selective inhibitors for MMP-9 (Inhibitor I), MMP-2 (Inhibitor III) or exogenous recombinant PN-1 added to the culture medium of C6 silenced cells restored either the migration and invasive ability or gelatinolytic activity thus validating the specificity of PN-1 silencing strategy. Phosphorylation levels of extracellular signal-related kinases (Erk1/2 and p38 MAPK) involved in MMP-9 and MMP-2 signaling were increased in PN-1 silenced cells. This study shows that PN-1 affects glioma cell migration and invasiveness through the regulation of uPA and MMP-9/2 expression levels which contribute to the degradation of extracellular matrix during tumor invasion.

19.
FEBS Open Bio ; 3: 459-66, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24251112

RESUMEN

In the central nervous system, alteration of glial cell differentiation can affect brain functions. Polychlorinated biphenyls (PCBs) are persistent environmental chemical contaminants that exert neurotoxic effects in glial and neuronal cells. We examined the effects of a commercial mixture of PCBs, Aroclor1254 (A1254) on astrocytic differentiation of glial cells, using the rat C6 cell line as in vitro model. The exposure for 24 h to sub-toxic concentrations of A1254 (3 or 9 µM) impaired dibutyryl cAMP-induced astrocytic differentiation as showed by the decrease of glial fibrillary acidic protein (GFAP) protein levels and inhibition in change of cell morphology toward an astrocytic phenotype. The A1254 inhibition was restored by the addition of a protein kinase C (PKC) inhibitor, bisindolylmaleimide (bis), therefore indicating that PCBs disturbed the cAMP-induced astrocytic differentiation of C6 cells via the PKC pathway. The phosphorylation of signal transducer and activator of transcription 3 (STAT3) is essential for cAMP-induced transcription of GFAP promoter in C6 cells. Our results indicated that the exposure to A1254 (3 or 9 µM) for 24 h suppressed cAMP-induced STAT3 phosphorylation. Moreover, A1254 reduced cAMP-dependent phosphorylation of STAT3 requires inhibition of PKC activity. Together, our results suggest that PCBs induce perturbation in cAMP/PKA and PKC signaling pathway during astrocytic differentiation of glial cells.

20.
Thyroid ; 23(6): 675-82, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23379327

RESUMEN

BACKGROUND: NKX2-1 mutations have been described in several patients with primary congenital hypothyroidism, respiratory distress, and benign hereditary chorea, which are classical manifestations of the brain-thyroid-lung syndrome (BTLS). METHODS: The NKX2-1 gene was sequenced in the members of a Brazilian family with clinical features of BTLS, and a novel monoallelic mutation was identified in the affected patients. We introduced the mutation in an expression vector for the functional characterization by transfection experiments using both thyroidal and lung-specific promoters. RESULTS: The mutation is a deletion of a cytosine at position 834 (ref. sequence NM_003317) (c.493delC) that causes a frameshift with formation of an abnormal protein from amino acid 165 and a premature stop at position 196. The last amino acid of the nuclear localization signal, the whole homeodomain, and the carboxy-terminus of NKX2-1 are all missing in the mutant protein, which has a premature stop codon at position 196 (p.Arg165Glyfs*32). The p.Arg165Glyfs*32 mutant does not bind DNA, and it is unable to transactivate the thyroglobulin (Tg) and the surfactant protein-C (SP-C) promoters. Interestingly, a dose-dependent dominant negative effect of the p.Arg165Glyfs*32 was demonstrated only on the Tg promoter, but not on the SP-C promoter. This effect was also noticed when the mutation was tested in presence of PAX8 or cofactors that synergize with NKX2-1 (P300 and TAZ). The functional effect was also compared with the data present in the literature and demonstrated that, so far, it is very difficult to establish a specific correlation among NKX2-1 mutations, their functional consequence, and the clinical phenotype of affected patients, thus suggesting that the detailed mechanisms of transcriptional regulation still remain unclear. CONCLUSIONS: We describe a novel NKX2-1 mutation and demonstrate that haploinsufficiency may not be the only explanation for BTLS. Our results indicate that NKX2-1 activity is also finely regulated in a tissue-specific manner, and additional studies are required to better understand the complexities of genotype-phenotype correlations in the NKX2-1 deficiency syndrome.


Asunto(s)
Atetosis/genética , Corea/genética , Hipotiroidismo Congénito/genética , Mutación del Sistema de Lectura , Proteínas Nucleares/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Factores de Transcripción/genética , Adolescente , Atetosis/metabolismo , Corea/metabolismo , Codón de Terminación , Hipotiroidismo Congénito/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Masculino , Madres , Señales de Localización Nuclear , Proteínas Nucleares/metabolismo , Especificidad de Órganos , Proteínas Recombinantes/metabolismo , Síndrome de Dificultad Respiratoria del Recién Nacido/metabolismo , Hermanos , Factor Nuclear Tiroideo 1 , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA