Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 202(17)2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32571966

RESUMEN

Chemotaxis and motility are important traits that support bacterial survival in various ecological niches and in pathogenic and symbiotic host interaction. Chemotactic stimuli are sensed by chemoreceptors or methyl-accepting chemotaxis proteins (MCPs), which direct the swimming behavior of the bacterial cell. In this study, we present evidence that the cellular abundance of chemoreceptors in the plant symbiont Sinorhizobium meliloti can be altered by the addition of several to as few as one amino acid residues and by including common epitope tags such as 3×FLAG and 6×His at their C termini. To further dissect this phenomenon and its underlying molecular mechanism, we focused on a detailed analysis of the amino acid sensor McpU. Controlled proteolysis is important for the maintenance of an appropriate stoichiometry of chemoreceptors and between chemoreceptors and chemotactic signaling proteins, which is essential for an optimal chemotactic response. We hypothesized that enhanced stability is due to interference with protease binding, thus affecting proteolytic efficacy. Location of the protease recognition site was defined through McpU stability measurements in a series of deletion and amino acid substitution mutants. Deletions in the putative protease recognition site had similar effects on McpU abundance, as did extensions at the C terminus. Our results provide evidence that the programmed proteolysis of chemotaxis proteins in S. meliloti is cell cycle regulated. This posttranslational control, together with regulatory pathways on the transcriptional level, limits the chemotaxis machinery to the early exponential growth phase. Our study identified parallels to cell cycle-dependent processes during asymmetric cell division in Caulobacter crescentusIMPORTANCE The symbiotic bacterium Sinorhizobium meliloti contributes greatly to growth of the agriculturally valuable host plant alfalfa by fixing atmospheric nitrogen. Chemotaxis of S. meliloti cells toward alfalfa roots mediates this symbiosis. The present study establishes programmed proteolysis as a factor in the maintenance of the S. meliloti chemotaxis system. Knowledge about cell cycle-dependent, targeted, and selective proteolysis in S. meliloti is important to understand the molecular mechanisms of maintaining a suitable chemotaxis response. While the role of regulated protein turnover in the cell cycle progression of Caulobacter crescentus is well understood, these pathways are just beginning to be characterized in S. meliloti In addition, our study should alert about the cautionary use of epitope tags for protein quantification.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis/fisiología , Sinorhizobium meliloti/metabolismo , Proteínas Bacterianas/química , Ciclo Celular/fisiología , Eliminación de Gen , Movimiento , Procesamiento Proteico-Postraduccional , Proteolisis
2.
Nat Cell Biol ; 20(5): 535-540, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29695786

RESUMEN

The discovery of RNAs (for example, messenger RNAs, non-coding RNAs) in sperm has opened the possibility that sperm may function by delivering additional paternal information aside from solely providing the DNA 1 . Increasing evidence now suggests that sperm small non-coding RNAs (sncRNAs) can mediate intergenerational transmission of paternally acquired phenotypes, including mental stress2,3 and metabolic disorders4-6. How sperm sncRNAs encode paternal information remains unclear, but the mechanism may involve RNA modifications. Here we show that deletion of a mouse tRNA methyltransferase, DNMT2, abolished sperm sncRNA-mediated transmission of high-fat-diet-induced metabolic disorders to offspring. Dnmt2 deletion prevented the elevation of RNA modifications (m5C, m2G) in sperm 30-40 nt RNA fractions that are induced by a high-fat diet. Also, Dnmt2 deletion altered the sperm small RNA expression profile, including levels of tRNA-derived small RNAs and rRNA-derived small RNAs, which might be essential in composing a sperm RNA 'coding signature' that is needed for paternal epigenetic memory. Finally, we show that Dnmt2-mediated m5C contributes to the secondary structure and biological properties of sncRNAs, implicating sperm RNA modifications as an additional layer of paternal hereditary information.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Trastornos del Metabolismo de la Glucosa/enzimología , Trastornos del Metabolismo de la Glucosa/genética , Herencia Paterna , ARN Pequeño no Traducido/genética , Espermatozoides/enzimología , Animales , Biomarcadores/sangre , Glucemia/metabolismo , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , Dieta Alta en Grasa , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Trastornos del Metabolismo de la Glucosa/sangre , Trastornos del Metabolismo de la Glucosa/diagnóstico , Herencia , Insulina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células 3T3 NIH , Conformación de Ácido Nucleico , Fenotipo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo , Relación Estructura-Actividad , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...