Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proteins ; 82(9): 1884-95, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24615866

RESUMEN

Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three-dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although noncomplementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts.


Asunto(s)
Epítopos/genética , Ingeniería de Proteínas , Proteínas/genética , Anticuerpos de Cadena Única/genética , Secuencia de Aminoácidos , Biología Computacional , Cristalización , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares , Mutagénesis , Unión Proteica , Mapas de Interacción de Proteínas
2.
Methods ; 55(4): 293-302, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21854852

RESUMEN

From G protein-coupled receptors to ion channels, membrane proteins represent over half of known drug targets. Yet, structure-based drug discovery is hampered by the dearth of available three-dimensional models for this large category of proteins. Other than efforts to improve membrane protein expression and stability, current strategies to improve the ability of membrane proteins to crystallize involve examining many orthologs and DNA constructs, testing the effects of different detergents for purification and crystallization, creating a lipidic environment during crystallization, and cocrystallizing with covalent or non-covalent soluble protein chaperones with an intrinsic high propensity to crystallize. In this review, we focus on this last category, highlighting successes of crystallization chaperones in membrane protein structure determination and recent developments in crystal chaperone engineering, including molecular display to enhance chaperone crystallizability, and end with a novel generic approach in development to target any membrane protein of interest.


Asunto(s)
Proteínas de la Membrana/química , Animales , Anticuerpos Monoclonales/química , Cristalización , Cristalografía por Rayos X , Detergentes/química , Humanos , Hibridomas , Proteínas de la Membrana/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
3.
Protein Eng Des Sel ; 24(5): 419-28, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21217145

RESUMEN

In spite of advances in protein expression and purification over the last decade, many proteins remain recalcitrant to structure determination by X-ray crystallography. One emerging tactic to obtain high-quality protein crystals for structure determination, particularly in the case of membrane proteins, involves co-crystallization with a protein-specific antibody fragment. Here, we report the development of new recombinant single-chain antibody fragments (scFv) capable of binding a specific epitope that can be introduced into internal loops of client proteins. The previously crystallized hexa-histidine-specific 3D5 scFv antibody was modified in the complementary determining region and by random mutagenesis, in conjunction with phage display, to yield scFvs with new biochemical characteristics and binding specificity. Selected variants include those specific for the hexa-histidine peptide with increased expression, solubility (up to 16.6 mg/ml) and sub-micromolar affinity, and those with new specificity for the EE hexa-peptide (EYMPME) and nanomolar affinity. Complexes of one such chaperone with model proteins harboring either an internal or a terminal EE tag were isolated by gel filtration. The 3.1 Šresolution structure of this chaperone reveals a binding surface complementary to the EE peptide and a ∼52 Šchannel in the crystal lattice. Notably, in spite of 85% sequence identity, and nearly identical crystallization conditions, the engineered scFv crystallizes in a different space group than the parent 3D5 scFv, and utilizes two new crystal contacts. These engineered scFvs represent a new class of chaperones that may eliminate the need for de novo identification of candidate chaperones from large antibody libraries.


Asunto(s)
Especificidad de Anticuerpos , Cristalización/métodos , Chaperonas Moleculares/inmunología , Péptidos/química , Péptidos/inmunología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/inmunología , Secuencia de Aminoácidos , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/inmunología , Cristalografía por Rayos X , Epítopos/inmunología , Histidina/inmunología , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Oligopéptidos/inmunología , Biblioteca de Péptidos , Conformación Proteica , Ingeniería de Proteínas , Anticuerpos de Cadena Única/genética
4.
Recent Pat Antiinfect Drug Discov ; 4(1): 1-17, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19149692

RESUMEN

The global market for monoclonal antibody therapeutics reached a total of $11.2 billion in 2004, with an impressive 42% growth rate over the previous five years and is expected to reach approximately $34 billion by 2010. Coupled with this growth are stream-lined product development, production scale-up and regulatory approval processes for the highly conserved antibody structure. While only one of the 21 current FDA-approved antibodies, and one of the 38 products in advanced clinical trials target infectious diseases, there is increasing academic, government and commercial interest in this area. Synagis, an antibody neutralizing respiratory syncitial virus (RSV), garnered impressive sales of $1.1 billion in 2006 in spite of its high cost and undocumented effects on viral titres in human patients. The success of anti-RSV passive immunization has motivated the continued development of anti-infectives to treat a number of other infectious diseases, including those mediated by viruses, toxins and bacterial/ fungal cells. Concurrently, advances in antibody technology suggest that cocktails of several monoclonal antibodies with unique epitope specificity or single monoclonal antibodies with broad serotype specificity may be the most successful format. Recent patents and patent applications in these areas will be discussed as predictors of future anti-infective therapeutics.


Asunto(s)
Antiinfecciosos/farmacología , Anticuerpos/farmacología , Proteínas Recombinantes/farmacología , Mapeo Epitopo , Ingeniería de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...