Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2320796121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959036

RESUMEN

Phoresy is an interspecies interaction that facilitates spatial dispersal by attaching to a more mobile species. Hitchhiking species have evolved specific traits for physical contact and successful phoresy, but the regulatory mechanisms involved in such traits and their evolution are largely unexplored. The nematode Caenorhabditis elegans displays a hitchhiking behavior known as nictation during its stress-induced developmental stage. Dauer-specific nictation behavior has an important role in natural C. elegans populations, which experience boom-and-bust population dynamics. In this study, we investigated the nictation behavior of 137 wild C. elegans strains sampled throughout the world. We identified species-wide natural variation in nictation and performed a genome-wide association mapping. We show that the variants in the promoter of nta-1, encoding a putative steroidogenic enzyme, underlie differences in nictation. This difference is due to the changes in nta-1 expression in glial cells, which implies that glial steroid metabolism regulates phoretic behavior. Population genetic analysis and geographic distribution patterns suggest that balancing selection maintained two nta-1 haplotypes that existed in ancestral C. elegans populations. Our findings contribute to further understanding of the molecular mechanism of species interaction and the maintenance of genetic diversity within natural populations.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neuroglía , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuroglía/metabolismo , Estudio de Asociación del Genoma Completo , Conducta Animal/fisiología , Variación Genética , Regiones Promotoras Genéticas/genética , Esteroides/metabolismo , Esteroides/biosíntesis
2.
Mater Today Bio ; 25: 100983, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38327977

RESUMEN

The use of the FDA-approved osteoinductive growth factor BMP2 is widespread for bone regeneration. However, its clinical application has been hindered by limitations in cell permeability and a short half-life in circulation. To address this issue, we have developed a modified version of BMP2, referred to as Cell Permeable (CP)-BMP2, which possesses improved cell permeability. CP-BMP2 incorporates an advanced macromolecular transduction domain (aMTD) to facilitate transfer across the plasma membrane, a solubilization domain, and recombinant human BMP2. Compared to traditional rhBMP2, CP-BMP2 exhibits enhanced cell permeability, solubility, and bioavailability, and activates Smad phosphorylation through binding to BMP receptor 2. The effectiveness of CP-BMP2 was evaluated in three animal studies focusing on bone regeneration. In the initial study, mice and rabbits with critical-size calvarial defects received subcutaneous (SC) injections of CP-BMP2 and rhBMP2 (7.5 mg/kg, 3 injections per week for 8 weeks).Following 8 weeks of administration, CP-BMP2 demonstrated a remarkable 65 % increase in bone formation in mice when compared to both the vehicle and rhBMP2. Moreover, rabbits exhibited faster bone formation, characterized by a filling pattern originating from the center. In a subsequent study involving injured horses, hind limb bones treated with CP-BMP2 exhibited an 85 % higher bone regeneration rate, as evidenced by Micro-CT results, in contrast to horses treated with the vehicle or rhBMP2 (administered at 150 µg/defect, subcutaneously, once a week for 8 weeks, without a scaffold). These results underscore the potential of CP-BMP2 to facilitate rapid and effective healing. No noticeable adverse effects, such as ectopic bone formation, were observed in any of the studies. Overall, our findings demonstrate that CP-BMP2 holds therapeutic potential as a novel and effective osteogenic agent.

3.
J Proteome Res ; 23(3): 985-998, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306169

RESUMEN

This study aims to elucidate the cellular mechanisms behind the secretion of complement factor B (CFB), known for its dual roles as an early biomarker for pancreatic ductal adenocarcinoma (PDAC) and as the initial substrate for the alternative complement pathway (ACP). Using parallel reaction monitoring analysis, we confirmed a consistent ∼2-fold increase in CFB expression in PDAC patients compared with that in both healthy donors (HD) and chronic pancreatitis (CP) patients. Elevated ACP activity was observed in CP and other benign conditions compared with that in HD and PDAC patients, suggesting a functional link between ACP and PDAC. Protein-protein interaction analyses involving key complement proteins and their regulatory factors were conducted using blood samples from PDAC patients and cultured cell lines. Our findings revealed a complex control system governing the ACP and its regulatory factors, including Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation, adrenomedullin (AM), and complement factor H (CFH). Particularly, AM emerged as a crucial player in CFB secretion, activating CFH and promoting its predominant binding to C3b over CFB. Mechanistically, our data suggest that the KRAS mutation stimulates AM expression, enhancing CFH activity in the fluid phase through binding. This heightened AM-CFH interaction conferred greater affinity for C3b over CFB, potentially suppressing the ACP cascade. This sequence of events likely culminated in the preferential release of ductal CFB into plasma during the early stages of PDAC. (Data set ID PXD047043.).


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Factor B del Complemento/genética , Factor B del Complemento/metabolismo , Vía Alternativa del Complemento , Proteínas Proto-Oncogénicas p21(ras) , Detección Precoz del Cáncer , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética
4.
Mol Ther ; 32(1): 227-240, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37925604

RESUMEN

The novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVID-19), can trigger dysregulated immune responses known as the cytokine release syndrome (CRS), leading to severe organ dysfunction and respiratory distress. Our study focuses on developing an improved cell-permeable nuclear import inhibitor (iCP-NI), capable of blocking the nuclear transport of inflammation-associated transcription factors, specifically nuclear factor kappa B (NF-κB). By fusing advanced macromolecule transduction domains and nuclear localization sequences from human NF-κB, iCP-NI selectively interacts with importin α5, effectively reducing the expression of proinflammatory cytokines. In mouse models mimic SARS-CoV-2-induced pneumonitis, iCP-NI treatment demonstrated a significant decrease in mortality rates by suppressing proinflammatory cytokine production and immune cell infiltration in the lungs. Similarly, in hamsters infected with SARS-CoV-2, iCP-NI effectively protected the lung from inflammatory damage by reducing tumor necrosis factor-α, interleukin-6 (IL-6), and IL-17 levels. These promising results highlight the potential of iCP-NI as a therapeutic approach for COVID-19-related lung complications and other inflammatory lung diseases.


Asunto(s)
COVID-19 , Ratones , Animales , Humanos , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , SARS-CoV-2 , FN-kappa B/metabolismo , Inflamación , Citocinas/metabolismo , Péptidos/metabolismo
5.
Cancer Med ; 12(15): 15933-15944, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37350558

RESUMEN

BACKGROUND: Carbohydrate antigen (CA) 19-9 is a known pancreatic cancer (PC) biomarker, but is not commonly used for general screening due to its low sensitivity and specificity. This study aimed to develop a serum metabolites-based diagnostic calculator for detecting PC with high accuracy. METHODS: A targeted quantitative approach of direct flow injection-tandem mass spectrometry combined with liquid chromatography-tandem mass spectrometry was employed for metabolomic analysis of serum samples using an Absolute IDQ™ p180 kit. Integrated metabolomic analysis was performed on 241 pooled or individual serum samples collected from healthy donors and patients from nine disease groups, including chronic pancreatitis, PC, other cancers, and benign diseases. Orthogonal partial least squares discriminant analysis (OPLS-DA) based on characteristics of 116 serum metabolites distinguished patients with PC from those with other diseases. Sparse partial least squares discriminant analysis (SPLS-DA) was also performed, incorporating simultaneous dimension reduction and variable selection. Predictive performance between discrimination models was compared using a 2-by-2 contingency table of predicted probabilities obtained from the models and actual diagnoses. RESULTS: Predictive values obtained through OPLS-DA for accuracy, sensitivity, specificity, balanced accuracy, and area under the receiver operating characteristic curve (AUC) were 0.9825, 0.9916, 0.9870, 0.9866, and 0.9870, respectively. The number of metabolite candidates was narrowed to 76 for SPLS-DA. The SPLS-DA-obtained predictive values for accuracy, sensitivity, specificity, balanced accuracy, and AUC were 0.9773, 0.9649, 0.9832, 0.9741, and 0.9741, respectively. CONCLUSIONS: We successfully developed a 76 metabolome-based diagnostic panel for detecting PC that demonstrated high diagnostic performance in differentiating PC from other diseases.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/metabolismo , Metabolómica/métodos , Metaboloma , Espectrometría de Masas en Tándem , Biomarcadores de Tumor/metabolismo , Neoplasias Pancreáticas
6.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35216508

RESUMEN

When animals are faced with food depletion, food search-associated locomotion is crucial for their survival. Although food search-associated locomotion is known to be regulated by dopamine, it has yet to investigate the potential molecular mechanisms governing the regulation of genes involved in dopamine metabolism (e.g., cat-1, cat-2) and related behavioral disorders. During the studies of the pheromone ascaroside, a signal of starvation stress in C. elegans, we identified R02D3.7, renamed rcat-1 (regulator of cat genes-1), which had previously been shown to bind to regulatory sequences of both cat-1 and cat-2 genes. It was found that RCAT-1 (R02D3.7) is expressed in dopaminergic neurons and functions as a novel negative transcriptional regulator for cat-1 and cat-2 genes. When a food source becomes depleted, the null mutant, rcat-1(ok1745), exhibited an increased frequency of high-angled turns and intensified area restricted search behavior compared to the wild-type animals. Moreover, rcat-1(ok1745) also showed defects in state-dependent olfactory adaptation and basal slowing response, suggesting that the mutants are deficient in either sensing food or locomotion toward food. However, rcat-1(ok1745) has normal cuticular structures and locomotion genes. The discovery of rcat-1 not only identifies a new subtype of dopamine-related behaviors but also provides a potential therapeutic target in Parkinson's disease.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Dopamina/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica/fisiología , Locomoción/fisiología , Feromonas/metabolismo , Transducción de Señal/fisiología
7.
J Proteome Res ; 20(12): 5315-5328, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34766501

RESUMEN

Although plasma complement factor B (CFB, NX_P00751), both alone and in combination with CA19-9 (i.e., the ComB-CAN), previously exhibited a reliable diagnostic ability for pancreatic cancer (PC), its detectability of the early stages and the cancer detection mechanism remained elusive. We first evaluated the diagnostic accuracy of ComB-CAN using plasma samples from healthy donors (HDs), patients with chronic pancreatitis (CP), and patients with different PC stages (I/II vs III/IV). An analysis of the area under the curve (AUC) by PanelComposer using logistic regression revealed that ComB-CAN has a superior diagnostic ability for early-stage PC (97.1.% [95% confidence interval (CI): (97.1-97.2)]) compared with CFB (94.3% [95% CI: 94.2-94.4]) or CA19-9 alone (34.3% [95% CI: 34.1-34.4]). In the comparisons of all stages of patients with PC vs CP and HDs, the AUC values of ComB-CAN, CFB, and CA19-9 were 0.983 (95% CI: 0.983-0.983), 0.950 (95% CI: 0.950-0.951), and 0.873 (95% CI: 0.873-0.874), respectively. We then investigated the molecular mechanism underlying the detection of early-stage PC by using stable cell lines of CFB knockdown and CFB overexpression. A global transcriptomic analysis coupled to cell invasion assays of both CFB-modulated cell lines suggested that CFB plays a tumor-promoting role in PC, which likely initiates the PI3K-AKT cancer signaling pathway. Thus our study establishes ComB-CAN as a reliable early diagnostic marker for PC that can be clinically applied for early PC screening in the general public.


Asunto(s)
Factor B del Complemento , Neoplasias Pancreáticas , Biomarcadores de Tumor/genética , Antígeno CA-19-9 , Factor B del Complemento/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas
8.
J Proteome Res ; 20(12): 5227-5240, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34670092

RESUMEN

The 2021 Metrics of the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 357 (92.8%) of the 19 778 predicted proteins coded in the human genome, a gain of 483 since 2020 from reports throughout the world reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 478 to 1421. This represents remarkable progress on the proteome parts list. The utilization of proteomics in a broad array of biological and clinical studies likewise continues to expand with many important findings and effective integration with other omics platforms. We present highlights from the Immunopeptidomics, Glycoproteomics, Infectious Disease, Cardiovascular, Musculo-Skeletal, Liver, and Cancers B/D-HPP teams and from the Knowledgebase, Mass Spectrometry, Antibody Profiling, and Pathology resource pillars, as well as ethical considerations important to the clinical utilization of proteomics and protein biomarkers.


Asunto(s)
Benchmarking , Proteoma , Bases de Datos de Proteínas , Humanos , Espectrometría de Masas/métodos , Proteoma/análisis , Proteoma/genética , Proteómica/métodos
9.
J Proteome Res ; 19(12): 4867-4883, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33206527

RESUMEN

We previously reported that human carboxylesterase 1 (CES1), a serine esterase containing a unique N-linked glycosyl group at Asn79 (N79 CES1), is a candidate serological marker of hepatocellular carcinoma (HCC). CES1 is normally present at low-to-undetectable levels in normal human plasma, HCC tumors, and major liver cancer cell lines. To investigate the potential mechanism underlying the suppression of CES1 expression in liver cancer cells, we took advantage of the low detectability of this marker in tumors by overexpressing CES1 in multiple HCC cell lines, including stable Hep3B cells. We found that the population of CES1-overexpressing (OE) cells decreased and that their doubling time was longer compared with mock control liver cancer cells. Using interactive transcriptome, proteome, and subsequent Gene Ontology enrichment analysis of CES1-OE cells, we found substantial decreases in the expression levels of genes involved in cell cycle regulation and proliferation. This antiproliferative function of the N79 glycan of CES1 was further supported by quantitative real-time polymerase chain reaction, flow cytometry, and an apoptosis protein array assay. An analysis of the levels of key signaling target proteins via Western blotting suggested that CES1 overexpression exerted an antiproliferative effect via the PKD1/PKCµ signaling pathway. Similar results were also seen in another HCC cell line (PLC/RFP/5) after transient transfection with CES1 but not in similarly treated non-HCC cell lines (e.g., HeLa and Tera-1 cells), suggesting that CES1 likely exerts a liver cell-type-specific suppressive effect. Given that the N-linked glycosyl group at Asn79 (N79 glycan) of CES1 is known to influence CES1 enzyme activity, we hypothesized that the post-translational modification of CES1 at N79 may be linked to its antiproliferative activity. To investigate the regulatory effect of the N79 glycan on cellular growth, we mutated the single N-glycosylation site in CES1 from Asn to Gln (CES1-N79Q) via site-directed mutagenesis. Fluorescence 2-D difference gel electrophoresis protein expression analysis of cell lysates revealed an increase in cell growth and a decrease in doubling time in cells carrying the N79Q mutation. Thus our results suggest that CES1 exerts an antiproliferative effect in liver cancer cells and that the single N-linked glycosylation at Asn79 plays a potential regulatory role. These functions may underlie the undetectability of CES1 in human HCC tumors and liver cancer cell lines. Mass spectrometry data are available via ProteomeXchange under the identifier PXD021573.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glicosilación , Humanos , Neoplasias Hepáticas/genética
10.
Nat Commun ; 11(1): 5301, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067450

RESUMEN

The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP's tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.


Asunto(s)
Enfermedad/genética , Proteoma/genética , Proyecto Genoma Humano , Humanos , Proteoma/química , Proteoma/metabolismo , Proteómica
11.
J Proteome Res ; 19(12): 4735-4746, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32931287

RESUMEN

According to the 2020 Metrics of the HUPO Human Proteome Project (HPP), expression has now been detected at the protein level for >90% of the 19 773 predicted proteins coded in the human genome. The HPP annually reports on progress made throughout the world toward credibly identifying and characterizing the complete human protein parts list and promoting proteomics as an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2020-01 classified 17 874 proteins as PE1, having strong protein-level evidence, up 180 from 17 694 one year earlier. These represent 90.4% of the 19 773 predicted coding genes (all PE1,2,3,4 proteins in neXtProt). Conversely, the number of neXtProt PE2,3,4 proteins, termed the "missing proteins" (MPs), was reduced by 230 from 2129 to 1899 since the neXtProt 2019-01 release. PeptideAtlas is the primary source of uniform reanalysis of raw mass spectrometry data for neXtProt, supplemented this year with extensive data from MassIVE. PeptideAtlas 2020-01 added 362 canonical proteins between 2019 and 2020 and MassIVE contributed 84 more, many of which converted PE1 entries based on non-MS evidence to the MS-based subgroup. The 19 Biology and Disease-driven B/D-HPP teams continue to pursue the identification of driver proteins that underlie disease states, the characterization of regulatory mechanisms controlling the functions of these proteins, their proteoforms, and their interactions, and the progression of transitions from correlation to coexpression to causal networks after system perturbations. And the Human Protein Atlas published Blood, Brain, and Metabolic Atlases.


Asunto(s)
Proteoma , Proteómica , Bases de Datos de Proteínas , Genoma Humano , Humanos , Espectrometría de Masas , Proteoma/genética
12.
Sci Rep ; 10(1): 7524, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32371913

RESUMEN

Upon sensing starvation stress, Caenorhabditis elegans larvae (L2d) elicit two seemingly opposing behaviors to escape from the stressful condition: food-seeking roaming mediated by the opioid peptide NLP-24 and dauer formation mediated by pheromones. Because opioid and pheromone signals both originate in ASI chemosensory neurons, we hypothesized that they might act sequentially or competitively to avoid starvation stress. Our data shows that NPR-17 opioid receptor signaling suppressed pheromone biosynthesis and the overexpression of opioid genes disturbed dauer formation. Likewise, DAF-37 pheromone receptor signaling negatively modulated nlp-24 expression in the ASI neurons. Under short-term starvation (STS, 3 h), both pheromone and opioid signaling were downregulated in gpa-3 mutants. Surprisingly, the gpa-3;nlp-24 double mutants exhibited much higher dauer formation than seen in either of the single mutants. Under long-term starvation (LTS, >24 h), the stress-activated SKN-1a downregulated opioid signaling and then enhanced dauer formation. Both insulin and serotonin stimulated opioid signaling, whereas NHR-69 suppressed opioid signaling. Thus, GPA-3 and SKN-1a are proposed to regulate cross-antagonistic interaction between opioids and pheromones in a cell-specific manner. These regulatory functions are suggested to be exerted via the selective interaction of GPA-3 with NPR-17 and site-specific SKN-1 binding to the promoter of nlp-24 to facilitate stress avoidance.


Asunto(s)
Analgésicos Opioides/metabolismo , Caenorhabditis elegans/fisiología , Feromonas/metabolismo , Receptores Opioides/metabolismo , Transducción de Señal , Estrés Fisiológico , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Insulina/metabolismo , Larva/metabolismo , Mutación , Neuronas/metabolismo , Serotonina/metabolismo , Inanición
13.
Int J Mol Sci ; 21(7)2020 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-32235409

RESUMEN

Under stressful conditions, the early larvae of C. elegans enter dauer diapause, a non-aging period, driven by the seemingly opposite influence of ascaroside pheromones (ASCRs) and steroid hormone dafachronic acids (DAs). However, the molecular basis of how these small molecules engage in competitive crosstalk in coordination with insulin/IGF-1 signaling (IIS) remains elusive. Here we report a novel transcriptional regulatory pathway that seems to operate between the ASCR and DA biosynthesis under ad libitum (AL) feeding conditions or bacterial deprivation (BD). Although expression of the ASCR and DA biosynthetic genes reciprocally inhibit each other, ironically and interestingly, such dietary cue-mediated modulation requires the presence of the competitors. Under BD, induction of ASCR biosynthetic gene expression required DA, while ASCR suppresses the expression of the DA biosynthetic gene daf-36. The negative regulation of DA by ASCR was IIS-dependent, whereas daf-36 regulation appeared to be independent of IIS. These observations suggest that the presence of ASCR determines the IIS-dependency of DA gene expression regardless of dietary conditions. Thus, our work defines a molecular basis for a novel reciprocal gene regulation of pheromones and hormones to cope with stressful conditions during development and aging.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Caenorhabditis elegans/fisiología , Señales (Psicología) , Hormonas/genética , Hormonas/metabolismo , Feromonas/genética , Feromonas/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colestenos/metabolismo , Regulación de la Expresión Génica , Modelos Biológicos , Transducción de Señal
14.
J Proteome Res ; 19(4): 1684-1695, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-31985234

RESUMEN

Various liver diseases, including hepatocellular carcinoma (HCC), have been linked to mitochondrial dysfunction, reduction of reactive oxygen species (ROS), and elevation of nitric oxide (NO). In this study, we subjected the human liver mitochondrial proteome to extensive quantitative proteomic profiling analysis and molecular characterization to identify potential signatures indicative of cancer cell growth and progression. Sequential proteomic analysis identified 2452 mitochondrial proteins, of which 1464 and 2010 were classified as nontumor and tumor (HCC) mitochondrial proteins, respectively, with 1022 overlaps. Further metabolic mapping of the HCC mitochondrial proteins narrowed our biological characterization to four proteins, namely, ALDH4A1, LRPPRC, ATP5C1, and ALDH6A1. The latter protein, a mitochondrial methylmalonate semialdehyde dehydrogenase (ALDH6A1), was most strongly suppressed in HCC tumor regions (∼10-fold decrease) in contrast to LRPPRC (∼6-fold increase) and was predicted to be present in plasma. Accordingly, we selected ALDH6A1 for functional analysis and engineered Hep3B cells to overexpress this protein, called ALDH6A1-O/E cells. Since ALDH6A1 is predicted to be involved in mitochondrial respiration, we assessed changes in the levels of NO and ROS in the overexpressed cell lines. Surprisingly, in ALDH6A1-O/E cells, NO was decreased nearly 50% but ROS was increased at a similar level, while the former was restored by treatment with S-nitroso-N-acetyl-penicillamine. The lactate levels were also decreased relative to control cells. Propidium iodide and Rhodamine-123 staining suggested that the decrease in NO and increase in ROS in ALDH6A1-O/E cells could be caused by depolarization of the mitochondrial membrane potential (ΔΨ). Taken together, our results suggest that hepatic neoplastic transformation appears to suppress the expression of ALDH6A1, which is accompanied by a respective increase and decrease in NO and ROS in cancer cells. Given the close link between ALDH6A1 suppression and abnormal cancer cell growth, this protein may serve as a potential molecular signature or biomarker of hepatocarcinogenesis and treatment responses.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Aldehído Oxidorreductasas , Apoptosis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Neoplasias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica , Especies Reactivas de Oxígeno/metabolismo
15.
Sci Rep ; 9(1): 18634, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31819109

RESUMEN

We investigated the potential application of preoperative serum metabolomes in predicting recurrence in patients with resected pancreatic cancer. From November 2012 to June 2014, patients who underwent potentially curative pancreatectomy for pancreatic ductal adenocarcinoma were examined. Among 57 patients, 32 were men; 42 had pancreatic head cancers. The 57 patients could be clearly categorized into two main clusters using 178 preoperative serum metabolomes. Patients within cluster 2 showed earlier tumor recurrence, compared with those within cluster 1 (p = 0.034). A nomogram was developed for predicting the probability of early disease-free survival in patients with resected pancreatic cancer. Preoperative cancer antigen (CA) 19-9 levels and serum metabolomes PC.aa.C38_4, PC.ae.C42_5, and PC.ae.C38_6 were the most powerful preoperative clinical variables with which to predict 6-month and 1-year cancer recurrence-free survival after radical pancreatectomy, with a Harrell's concordance index of 0.823 (95% CI: 0.750-0.891) and integrated area under the curve of 0.816 (95% CI: 0.736-0.893). Patients with resected pancreatic cancer could be categorized according to their different metabolomes to predict early cancer recurrence. Preoperative detectable parameters, serum CA 19-9, PC.aa.C38_4, PC.ae.C42_5, and PC.ae.C38_6 were the most powerful predictors of early recurrence of pancreatic cancer.


Asunto(s)
Adenocarcinoma/sangre , Antígeno CA-19-9/sangre , Carcinoma Ductal Pancreático/sangre , Recurrencia Local de Neoplasia/sangre , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenocarcinoma/cirugía , Anciano , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/cirugía , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Metaboloma/genética , Metabolómica , Persona de Mediana Edad , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Nomogramas , Pronóstico , Factores de Riesgo
16.
Sci Rep ; 9(1): 18440, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804558

RESUMEN

WNT signaling activation in colorectal cancers (CRCs) occurs through APC inactivation or ß-catenin mutations. Both processes promote ß-catenin nuclear accumulation, which up-regulates epithelial-to-mesenchymal transition (EMT). We investigated ß-catenin localization, transcriptome, and phenotypic differences of HCT116 cells containing a wild-type (HCT116-WT) or mutant ß-catenin allele (HCT116-MT), or parental cells with both WT and mutant alleles (HCT116-P). We then analyzed ß-catenin expression and associated phenotypes in CRC tissues. Wild-type ß-catenin showed membranous localization, whereas mutant showed nuclear localization; both nuclear and non-nuclear localization were observed in HCT116-P. Microarray analysis revealed down-regulation of Claudin-7 and E-cadherin in HCT116-MT vs. HCT116-WT. Claudin-7 was also down-regulated in HCT116-P vs. HCT116-WT without E-cadherin dysregulation. We found that ZEB1 is a critical EMT factor for mutant ß-catenin-mediated loss of E-cadherin and Claudin-7 in HCT116-P and HCT116-MT cells. We also demonstrated that E-cadherin binds to both WT and mutant ß-catenin, and loss of E-cadherin releases ß-catenin from the cell membrane and leads to its degradation. Alteration of Claudin-7, as well as both Claudin-7 and E-cadherin respectively caused tight junction (TJ) impairment in HCT116-P, and dual loss of TJs and adherens junctions (AJs) in HCT116-MT. TJ loss increased cell motility, and subsequent AJ loss further up-regulated that. Immunohistochemistry analysis of 101 CRCs revealed high (14.9%), low (52.5%), and undetectable (32.6%) ß-catenin nuclear expression, and high ß-catenin nuclear expression was significantly correlated with overall survival of CRC patients (P = 0.009). Our findings suggest that ß-catenin activation induces EMT progression by modifying cell-cell junctions, and thereby contributes to CRC aggressiveness.


Asunto(s)
Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Wnt/genética , beta Catenina/genética , Uniones Adherentes/metabolismo , Uniones Adherentes/patología , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Claudinas/genética , Claudinas/metabolismo , Neoplasias Colorrectales/patología , Regulación hacia Abajo , Perfilación de la Expresión Génica , Células HCT116 , Humanos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , beta Catenina/metabolismo
18.
J Proteome Res ; 18(12): 4108-4116, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31599596

RESUMEN

The Human Proteome Organization's (HUPO) Human Proteome Project (HPP) developed Mass Spectrometry (MS) Data Interpretation Guidelines that have been applied since 2016. These guidelines have helped ensure that the emerging draft of the complete human proteome is highly accurate and with low numbers of false-positive protein identifications. Here, we describe an update to these guidelines based on consensus-reaching discussions with the wider HPP community over the past year. The revised 3.0 guidelines address several major and minor identified gaps. We have added guidelines for emerging data independent acquisition (DIA) MS workflows and for use of the new Universal Spectrum Identifier (USI) system being developed by the HUPO Proteomics Standards Initiative (PSI). In addition, we discuss updates to the standard HPP pipeline for collecting MS evidence for all proteins in the HPP, including refinements to minimum evidence. We present a new plan for incorporating MassIVE-KB into the HPP pipeline for the next (HPP 2020) cycle in order to obtain more comprehensive coverage of public MS data sets. The main checklist has been reorganized under headings and subitems, and related guidelines have been grouped. In sum, Version 2.1 of the HPP MS Data Interpretation Guidelines has served well, and this timely update to version 3.0 will aid the HPP as it approaches its goal of collecting and curating MS evidence of translation and expression for all predicted ∼20 000 human proteins encoded by the human genome.


Asunto(s)
Guías como Asunto , Espectrometría de Masas/métodos , Proteoma , Procesamiento de Señales Asistido por Computador , Humanos , Proteómica , Sociedades Científicas
19.
J Proteome Res ; 18(12): 4098-4107, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31430157

RESUMEN

The Human Proteome Project (HPP) annually reports on progress made throughout the field in credibly identifying and characterizing the complete human protein parts list and making proteomics an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2019-01-11 contains 17 694 proteins with strong protein-level evidence (PE1), compliant with HPP Guidelines for Interpretation of MS Data v2.1; these represent 89% of all 19 823 neXtProt predicted coding genes (all PE1,2,3,4 proteins), up from 17 470 one year earlier. Conversely, the number of neXtProt PE2,3,4 proteins, termed the "missing proteins" (MPs), has been reduced from 2949 to 2129 since 2016 through efforts throughout the community, including the chromosome-centric HPP. PeptideAtlas is the source of uniformly reanalyzed raw mass spectrometry data for neXtProt; PeptideAtlas added 495 canonical proteins between 2018 and 2019, especially from studies designed to detect hard-to-identify proteins. Meanwhile, the Human Protein Atlas has released version 18.1 with immunohistochemical evidence of expression of 17 000 proteins and survival plots as part of the Pathology Atlas. Many investigators apply multiplexed SRM-targeted proteomics for quantitation of organ-specific popular proteins in studies of various human diseases. The 19 teams of the Biology and Disease-driven B/D-HPP published a total of 160 publications in 2018, bringing proteomics to a broad array of biomedical research.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/metabolismo , Proteoma , Cromosomas Humanos , Guías como Asunto , Humanos , Espectrometría de Masas , Proteínas/química , Proteínas/genética , Proteoma/genética
20.
Int J Mol Sci ; 20(16)2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31405082

RESUMEN

Pheromones are neuronal signals that stimulate conspecific individuals to react to environmental stressors or stimuli. Research on the ascaroside (ascr) pheromones in Caenorhabditis elegans and other nematodes has made great progress since ascr#1 was first isolated and biochemically defined in 2005. In this review, we highlight the current research on the structural diversity, biosynthesis, and pleiotropic neuronal functions of ascr pheromones and their implications in animal physiology. Experimental evidence suggests that ascr biosynthesis starts with conjugation of ascarylose to very long-chain fatty acids that are then processed via peroxisomal ß-oxidation to yield diverse ascr pheromones. We also discuss the concentration and stage-dependent pleiotropic neuronal functions of ascr pheromones. These functions include dauer induction, lifespan extension, repulsion, aggregation, mating, foraging and detoxification, among others. These roles are carried out in coordination with three G protein-coupled receptors that function as putative pheromone receptors: SRBC-64/66, SRG-36/37, and DAF-37/38. Pheromone sensing is transmitted in sensory neurons via DAF-16-regulated glutamatergic neurotransmitters. Neuronal peroxisomal fatty acid ß-oxidation has important cell-autonomous functions in the regulation of neuroendocrine signaling, including neuroprotection. In the future, translation of our knowledge of nematode ascr pheromones to higher animals might be beneficial, as ascr#1 has some anti-inflammatory effects in mice. To this end, we propose the establishment of pheromics (pheromone omics) as a new subset of integrated disciplinary research area within chemical ecology for system-wide investigation of animal pheromones.


Asunto(s)
Caenorhabditis elegans/fisiología , Glucolípidos/metabolismo , Neuronas/fisiología , Feromonas/metabolismo , Animales , Vías Biosintéticas , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Glucolípidos/química , Neuronas/química , Neuroprotección , Feromonas/química , Receptores Acoplados a Proteínas G/metabolismo , Conducta Sexual Animal , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...