Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(22): 10312-10323, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38776455

RESUMEN

This article demonstrated the redox-noninnocent phenylene-linked bis(ß-diketiminate) (L2-)-bridged first example of isomeric diruthenium(III)-acac species (acac = acetylacetonate) and its ability to activate dioxygen. The coordination of deprotonated L2- to the {Ru(acac)2} in bis(bidentate) mode led to isomeric {(acac)2RuIII}2(µ-L2-) (S = 1, 1-trans/1-cis, green). 1 displayed Ru(III)-based anisotropic EPR in CH3CN but without the resolution of the forbidden (ΔMs = 2) g1/2 signal at 77 K. 1-cis, however, slowly transformed to the energetically favored 1-trans form. 1 underwent two-step oxygenation at the Cß sites of L2- to form the ß-diketiminate/α-ketodiimine (L'-)-bridged mixed valent (acac)2RuIII(µ-L'-)RuII(acac)2 (2, S = 1/2, pink) followed by bis(α-ketodiimine) (L″)-bridged isovalent (acac)2RuII(µ-L″)RuII(acac)2 (3, S = 0, red). The role of O2 toward 1 → 2/3 was corroborated by 18O2 labeling experiment. Redox steps of 1-3 varied as a function of isomeric identity, bridge, and metal oxidation state. The calculated MOs and Mulliken spin densities attributed to the noninnocence of L2-, L'-, and L″ in the respective complexes. Spectrophotometric monitoring of 1 → 2 revealed pseudo-first-order rate constants (105k s-1) of 1.8 (303 K), 3.5 (313 K), 7.7 (323 K), and 17.0 (333 K) and ΔH⧧/ΔS⧧/ΔG⧧ of 14.3 kcal mol-1/-33.1 cal mol-1 K-1/24.2 kcal mol-1 (298 K), respectively. Moreover, characterization of the short-lived blue intermediate obtained during the conversion of 1 → 2/3 upon exposure to O2 supported its valence tautomeric form (VT1, RuIII-L2--RuIII ↔ RuIII-L•--RuII, S = 1), which in effect facilitated oxygen activation at the ligand backbone.

2.
J Inorg Biochem ; 257: 112611, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38788359

RESUMEN

A mononuclear iron(II) complex, [(TpPh2)FeII(OTf)(CH3CN)] (1) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate, OTf = triflate) has been isolated and its efficiency toward the aliphatic CC bond cleavage reaction of 1,2-diols with dioxygen has been investigated. Separate reactions between 1 and different 1,2-diolates form the corresponding iron(II)-diolate complexes in solution. While the iron(II) complex of the tetradentate TPA (tris(2-pyridylmethyl)amine) ligand is not efficient in affecting the CC cleavage of 1,2-diol with dioxygen, complex 1 displays catalytic activity to afford carboxylic acid and aldehyde. Isotope labeling studies with 18O2 reveal that one oxygen atom from dioxygen is incorporated into the carboxylic acid product. The oxygenative CC cleavage reactions occur on the 1,2-diols containing at least one α-H atom. The kinetic isotope effect value of 5.7 supports the abstraction of an α-H by an iron(III)-superoxo species to propagate the CC cleavage reactions. The oxidative cleavage of 1,2-diolates by the iron(II) complex mimics the reaction catalyzed by the nonheme diiron enzyme, myo-inositol oxygenase.


Asunto(s)
Inositol-Oxigenasa , Oxígeno , Oxígeno/química , Inositol-Oxigenasa/química , Inositol-Oxigenasa/metabolismo , Hierro/química , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Compuestos Ferrosos/química , Catálisis
3.
Acc Chem Res ; 56(22): 3175-3187, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37938969

RESUMEN

ConspectusAerobic organisms involve dioxygen-activating iron enzymes to perform various metabolically relevant chemical transformations. Among these enzymes, mononuclear non-heme iron enzymes reductively activate dioxygen to catalyze diverse biological oxidations, including oxygenation of C-H and C═C bonds and C-C bond cleavage with amazing selectivity. Several non-heme enzymes utilize organic cofactors as electron sources for dioxygen reduction, leading to the generation of iron-oxygen intermediates that act as active oxidants in the catalytic cycle. These unique enzymatic reactions influence the design of small molecule synthetic compounds to emulate enzyme functions and to develop bioinspired catalysts for performing selective oxidation of organic substrates with dioxygen. Selective electron transfer during dioxygen reduction on iron centers of synthetic models by a sacrificial reductant requires appropriate design strategies. Taking lessons from the role of enzyme-cofactor complexes in the selective electron transfer process, our group utilized ternary iron(II)-α-hydroxy acid complexes supported by polydentate ligands for dioxygen reduction and bioinspired oxidations. This Account focuses on the role of coordinated sacrificial reductants in the selective electron transfer for dioxygen reduction by iron complexes and highlights the versatility of iron(II)-α-hydroxy acid complexes in affecting dioxygen-dependent oxidation/oxygenation reactions. The iron(II)-coordinated α-hydroxy acid anions undergo two-electron oxidative decarboxylation concomitant with the generation of reactive iron-oxygen oxidants. A nucleophilic iron(II)-hydroperoxo species was intercepted in the decarboxylation pathway. In the presence of a Lewis acid, the O-O bond of the nucleophilic oxidant is heterolytically cleaved to generate an electrophilic iron(IV)-oxo-hydroxo oxidant. Most importantly, the oxidants generated with or without Lewis acid can carry out cis-dihydroxylation of alkenes. Furthermore, the electrophilic iron-oxygen oxidant selectively hydroxylates strong C-H bonds. Another electrophilic iron(IV)-oxo oxidant, generated from the iron(II)-α-hydroxy acid complexes in the presence of a protic acid, carries out C-H bond halogenation by using a halide anion.Thus, different metal-oxygen intermediates could be generated from dioxygen using a single reductant, and the reactivity of the ternary complexes can be tuned using external additives (Lewis/protic acid). The catalytic potential of the iron(II)-α-hydroxy complexes in performing O2-dependent oxygenations has been demonstrated. Different factors that govern the reactivity of iron-oxygen oxidants from ternary iron(II) complexes are presented. The versatile reactivity of the oxidants provides useful insights into developing catalytic methods for the selective incorporation of oxidized functionalities under environmentally benign conditions using aerial oxygen as the terminal oxidant.


Asunto(s)
Ácidos de Lewis , Oxígeno , Oxígeno/química , Sustancias Reductoras , Hierro/química , Oxidación-Reducción , Oxidantes/química , Compuestos Ferrosos/química , Hidroxiácidos
4.
Dalton Trans ; 52(45): 16616-16630, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37882084

RESUMEN

Generation of high-valent oxomanganese complexes through controlled removal of protons and electrons from low-valent congeners is a crucial step toward the synthesis of functional analogues of the native oxygen evolving complex (OEC). In-depth studies of the water oxidation activity of such biomimetic compounds help in understanding the mechanism of O-O bond formation presumably occurring in the last step of the photosynthetic cycle. Scarce reports of reactive high-valent oxomanganese complexes underscore the impetus for the present work, wherein we report the electrochemical generation of the non-heme oxomanganese(IV) species [(dpaq)MnIV(O)]+ (2) through a proton-coupled electron transfer (PCET) process from the hydroxomanganese complex [(dpaq)MnIII(OH)]ClO4 (1). Controlled potential spectroelectrochemical studies of 1 in wet acetonitrile at 1.45 V vs. NHE revealed quantitative formation of 2 within 10 min. The high-valent oxomanganese(IV) transient exhibited remarkable stability and could be reverted to the starting complex (1) by switching the potential to 0.25 V vs. NHE. The formation of 2via PCET oxidation of 1 demonstrates an alternate pathway for the generation of the oxomanganese(IV) transient (2) without the requirement of redox-inactive metal ions or acid additives as proposed earlier. Theoretical studies predict that one-electron oxidation of [(dpaq)MnIV(O)]+ (2) forms a manganese(V)-oxo (3) species, which can be oxidized further by one electron to a formal manganese(VI)-oxo transient (4). Theoretical analyses suggest that the first oxidation event (2 to 3) takes place at the metal-based d-orbital, whereas, in the second oxidation process (3 to 4), the electron eliminates from an orbital composed of equitable contribution from the metal and the ligand, leaving a single electron in the quinoline-dominant orbital in the doublet ground spin state of the manganese(VI)-oxo species (4). This mixed metal-ligand (quinoline)-based oxidation is proposed to generate a formal Mn(VI) species (4), a non-heme analogue of the species 'compound I', formed in the catalytic cycle of cytochrome P-450. We propose that the highly electrophilic species 4 catches water during cyclic voltammetry experiments and results in O-O bond formation leading to electrocatalytic oxidation of water to hydrogen peroxide.

5.
Dalton Trans ; 52(4): 1062-1073, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36602242

RESUMEN

Two mononuclear nonheme iron(II)-benzoylformate (BF) complexes [(6Me2-Me-BPA)Fe(BF)](ClO4) (1a) and [(6Me3-TPMM)Fe(BF)](ClO4) (1b) of tridentate nitrogen donor ligands, bis((6-methylpyridin-2-yl)methyl)(N-methyl)amine (6Me2-Me-BPA) and tris(2-(6-methyl)pyridyl)methoxymethane (6Me3-TPMM), were isolated and characterized. The structural characterization of iron(II)-chloro complexes indicates that the ligand 6Me2-Me-BPA binds to the iron(II) centre in a meridional fashion, whereas 6Me3-TPMM behaves as a facial ligand. Both the ligands were functionalized with terminal thiol for immobilization on gold nanoparticles (AuNPs), and the corresponding iron(II) complexes [(6Me2-BPASH)Fe(BF)(ClO4)]@C8Au (2a) and [(6Me3-TPMSH)Fe(BF)(ClO4)]@C8Au (2b) were prepared to probe the effect of immobilization on their ability to perform bioinspired oxidation reactions. All the complexes react with dioxygen to display the oxidative decarboxylation of the coordinated benzoylformate, but the complexes supported by 6Me3-TPMM and its thiol-appended ligand display faster reactivity compared to their analogues with the 6Me2-Me-BPA-derived ligands. In each case, an electrophilic iron-oxygen oxidant was intercepted as the active oxidant generated from dioxygen. The immobilized complexes (2a and 2b) display enhanced O2-dependent reactivity in oxygen-atom transfer reactions (OAT) and hydrogen-atom transfer (HAT) reactions compared to their homogeneous congeners (1a and 1b). Furthermore, the immobilized complex 2b displays catalytic OAT reactions. This study supports that the ligand geometry and immobilization on AuNPs influence the dioxygen-dependent reactivity of the complexes.


Asunto(s)
Hierro , Nanopartículas del Metal , Hierro/química , Oro , Ligandos , Oxígeno/química , Cetoácidos , Oxidantes , Compuestos Ferrosos/química
6.
Inorg Chem ; 61(27): 10461-10476, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35759790

RESUMEN

The isolation, characterization, and dioxygen reactivity of monomeric [(TPA)MII(mandelate)]+ (M = Fe, 1; Co, 3) and dimeric [(BPMEN)2MII2(µ-mandelate)2]2+ (M = Fe, 2; Co, 4) (TPA = tris(2-pyridylmethyl)amine and BPMEN = N1,N2-dimethyl-N1,N2-bis(pyridin-2-yl-methyl)ethane-1,2-diamine) complexes are reported. The iron(II)- and cobalt(II)-mandelate complexes react with dioxygen to afford benzaldehyde and benzoic acid in a 1:1 ratio. In the reactions, one oxygen atom from dioxygen is incorporated into benzoic acid, but benzaldehyde does not derive any oxygen atom from dioxygen. While no O2-derived intermediate is observed with the iron(II)-mandelate complexes, the analogous cobalt(II) complexes react with dioxygen at a low temperature (-80 °C) to generate the corresponding cobalt(III)-superoxo species (S), a key intermediate implicated in the initiation of mandelate decarboxylation. At -20 °C, the cobalt(II)-mandelate complexes bind dioxygen reversibly leading to the formation of µ-1,2-peroxo-dicobalt(III)-mandelate species (P). The geometric and electronic structures of the O2-derived intermediates (S and P) have been established by computational studies. The intermediates S and P upon treatment with a protic acid undergo decarboxylation to afford benzaldehyde (50%) with a concomitant formation of the corresponding µ-1,2-peroxo-µ-mandelate-dicobalt(III) (P1) species. The crystal structure of a peroxide species isolated from the cobalt(II)-carboxylate complex [(TPA)CoII(MPA)]+ (5) (MPA = 2-methoxyphenylacetate) supports the composition of P1. The observations of the dioxygen-derived intermediates from cobalt complexes and their electronic structure analyses not only provide information about the nature of active species involved in the decarboxylation of mandelate but also shed light on the mechanistic pathway of two-electron versus four-electron reduction of dioxygen.


Asunto(s)
Hierro , Oxígeno , Benzaldehídos , Ácido Benzoico , Cobalto , Descarboxilación , Compuestos Ferrosos/química , Hierro/química , Ligandos , Oxígeno/química
7.
Dalton Trans ; 51(6): 2480-2492, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35050271

RESUMEN

Four cobalt(II)-carboxylate complexes [(6-Me3-TPA)CoII(benzoate)](BPh4) (1), [(6-Me3-TPA)CoII(benzilate)](ClO4) (2), [(6-Me3-TPA)CoII(mandelate)](BPh4) (3), and [(6-Me3-TPA)CoII(MPA)](BPh4) (4) (HMPA = 2-methoxy-2-phenylacetic acid) of the 6-Me3-TPA (tris((6-methylpyridin-2-yl)methyl)amine) ligand were isolated to investigate their ability in H2O2-dependent selective oxygenation of C-H and CC bonds. All six-coordinate complexes contain a high-spin cobalt(II) center. While the cobalt(II) complexes are inert toward dioxygen, each of these complexes reacts readily with hydrogen peroxide to form a diamagnetic cobalt(III) species, which decays with time leading to the oxidation of the methyl groups on the pyridine rings of the supporting ligand. Intramolecular ligand oxidation by the cobalt-based oxidant is partially inhibited in the presence of external substrates, and the substrates are converted to their corresponding oxidized products. Kinetic studies and labelling experiments indicate the involvement of a metal-based oxidant in affecting the chemo- and stereo-selective catalytic oxygenation of aliphatic C-H bonds and epoxidation of alkenes. An electrophilic cobalt-oxygen species that exhibits a kinetic isotope effect (KIE) value of 5.3 in toluene oxidation by 1 is proposed as the active oxidant. Among the complexes, the cobalt(II)-benzoate (1) and cobalt(II)-MPA (4) complexes display better catalytic activity compared to their α-hydroxy analogues (2 and 3). Catalytic studies with the cobalt(II)-acetonitrile complex [(6-Me3-TPA)CoII(CH3CN)2](ClO4)2 (5) in the presence and absence of externally added benzoate support the role of the carboxylate co-ligand in oxidation reactions. The proposed catalytic reaction involves a carboxylate-bridged dicobalt complex in the activation of H2O2 followed by the oxidation of substrates by a metal-based oxidant.

8.
Dalton Trans ; 50(16): 5590-5597, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908934

RESUMEN

The ability of four mononuclear nonheme iron(iv)-oxo complexes supported by polydentate nitrogen donor ligands to degrade organic pollutants has been investigated. The water soluble iron(ii) complexes upon treatment with ceric ammonium nitrate (CAN) in aqueous solution are converted into the corresponding iron(iv)-oxo complexes. The hydrogen atom transfer (HAT) ability of iron(iv)-oxo species has been exploited for the oxidation of halogenated phenols and other toxic pollutants with weak X-H (X = C, O, S, etc.) bonds. The iron-oxo oxidants can oxidize chloro- and fluorophenols with moderate to high yields under stoichiometric as well as catalytic conditions. Furthermore, these oxidants perform selective oxidative degradation of several persistent organic pollutants (POPs) such as bisphenol A, nonylphenol, 2,4-D (2,4-dichlorophenoxyacetic acid) and gammaxene. This work demonstrates the utility of water soluble iron(iv)-oxo complexes as potential catalysts for the oxidative degradation of a wide range of toxic pollutants, and these oxidants could be considered as an alternative to conventional oxidation methods.

9.
Inorg Chem ; 60(8): 5969-5979, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33784082

RESUMEN

Spin states of iron often direct the selectivity in oxidation catalysis by iron complexes using hydrogen peroxide (H2O2) on an oxidant. While low-spin iron(III) hydroperoxides display stereoselective C-H bond hydroxylation, the reactions are nonstereoselective with high-spin iron(II) catalysts. The catalytic studies with a series of high-spin iron(II) complexes of N4 ligands with H2O2 and Sc3+ reported here reveal that the Lewis acid promotes catalytic C-H bond hydroxylation with high chemo- and stereoselectivity. This reactivity pattern is observed with iron(II) complexes containing two cis-labile sites. The enhanced selectivity for C-H bond hydroxylation catalyzed by the high-spin iron(II) complexes in the presence of Sc3+ parallels that of the low-spin iron catalysts. Furthermore, the introduction of multimetal centers enhances the activity and selectivity of the iron catalyst. The study provides insights into the development of peroxide-dependent bioinspired catalysts for the selective oxygenation of C-H bonds without the restriction of using iron complexes of strong-field ligands.

10.
Dalton Trans ; 49(32): 11375-11384, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32766641

RESUMEN

Two zinc(ii)-NSAID complexes [(phendione)ZnII(NPR)2(H2O)2] (1) and [(phendione)ZnII(MFN)2] (2) (HNPR = naproxen and HMFN = mefenamic acid) of 1,10-phenanthroline-5,6-dione (phendione) were isolated and characterized to evaluate their potential as anti-cancer agents. Each of the complexes contains two equivalents of NSAID per zinc(ii)-phendione unit. The complexes are stable in solution under cell culture conditions. Cytotoxic assay on the human breast cancer cell line (MDA-MB-231) reveals that the anti-proliferative activity of phendione is retained in both the complexes. The anti-inflammatory properties of NSAIDs are also preserved in the metal complexes as evident from the PGE2 assay. Both 1 and 2 exhibit selective COX-1 inhibition at a low concentration. Furthermore, the zinc(ii)-naproxen complex (1) disrupts the intercellular bridges displaying in vitro delay in cellular migration and down-regulation of EMT-related genes. The mechanistic studies indicate that the ternary complexes are more active compared to cisplatin and have the potential to overcome cisplatin resistance in MDA MB 231 cells. These findings demonstrate that the zinc(ii)-NSAID complexes are worthy of further in vivo studies for their promising anti-tumor potential.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Fenantrolinas/farmacología , Zinc/farmacología , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Teoría Funcional de la Densidad , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Fenantrolinas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas , Zinc/química
11.
Chem Asian J ; 15(8): 1360-1368, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32141712

RESUMEN

Three new iron(II)-benzilate complexes [(N4Py)FeII (benzilate)]ClO4 (1), [(N4PyMe2 )FeII (benzilate)]ClO4 (2) and [(N4PyMe4 )FeII (benzilate)]ClO4 (3) of neutral pentadentate nitrogen donor ligands have been isolated and characterized to study their dioxygen reactivity. Single-crystal X-ray structures reveal a mononuclear six-coordinate iron(II) center in each case, where benzilate binds to the iron center in monodentate mode via one carboxylate oxygen. Introduction of methyl groups in the 6-positions of the pyridine rings makes the N4PyMe2 and N4PyMe4 ligand fields weaker compared to that of the parent N4Py ligand. All the complexes (1-3) react with dioxygen to decarboxylate the coordinated benzilate to benzophenone quantitatively. The decarboxylation is faster for the complex of the more sterically hindered ligand and follows the order 3>2>1. The complexes display oxygen atom transfer reactivity to thioanisole and also exhibit hydrogen atom transfer reactions with substrates containing weak C-H bonds. Based on interception studies with external substrates, labelling experiments and Hammett analysis, a nucleophilic iron(II)-hydroperoxo species is proposed to form upon two-electron reductive activation of dioxygen by each iron(II)-benzilate complex. The nucleophilic oxidants are converted to the corresponding electrophilic iron(IV)-oxo oxidant upon treatment with a protic acid. The high-spin iron(II)-benzilate complex with the weakest ligand field results in the formation of a more reactive iron-oxygen oxidant.

12.
Dalton Trans ; 49(11): 3463-3472, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32103212

RESUMEN

Three mononuclear cobalt(ii)-carboxylate complexes, [(TPA)CoII(benzilate)]+ (1), [(TPA)CoII(benzoate)]+ (2) and [(iso-BPMEN)CoII(benzoate)]+ (3), of N4 ligands (TPA = tris(2-pyridylmethyl)amine and iso-BPMEN = N1,N1-dimethyl-N2,N2-bis((pyridin-2-yl)methyl)ethane-1,2-diamine) were isolated to investigate their reactivity toward dioxygen. Monodentate (η1) binding of the carboxylates to the metal centre favours the five-coordinate cobalt(ii) complexes (1-3) for dioxygen activation. Complex 1 slowly reacts with dioxygen to enable the oxidative decarboxylation of the coordinated α-hydroxy acid (benzilate). Prolonged exposure of the reaction solution of 2 to dioxygen results in the formation of [(DPA)CoIII(picolinate)(benzoate)]+ (4) and [CoIII(BPCA)2]+ (5) (DPA = di(2-picolyl)amine and HBPCA = bis(2-pyridylcarbonyl)amide), whereas only [(DPEA)CoIII(picolinate)(benzoate)]+ (6) (DPEA = N1,N1-dimethyl-N2-(pyridine-2-ylmethyl)-ethane-1,2-diamine) is isolated from the final oxidised solution of 3. The modified ligand DPA (or DPEA) is formed via the oxidative C-N bond cleavage of the supporting ligands. Further oxidation of the -CH2- moiety to -C([double bond, length as m-dash]O)- takes place in the transformation of DPA to HBPCA on the cobalt(ii) centre. Labelling experiments with 18O2 confirm the incorporation of oxygen atoms from molecular oxygen into the oxidised products. Mixed labelling studies with 16O2 and H2O18 strongly support the involvement of water in the C-N bond cleavage pathway. A comparison of the dioxygen reactivity of the cobalt complexes (1-3) with those of several other five-coordinate mononuclear complexes [(TPA)CoII(X)]+/2+ (X = Cl, CH3CN, acetate, benzoylformate, salicylate and phenylpyruvate) establishes the role of the carboxylate co-ligands in the activation of dioxygen and subsequent oxidative cleavage of the supporting ligands by a metal-oxygen oxidant.

13.
J Biol Inorg Chem ; 25(1): 3-11, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31637527

RESUMEN

The ability of two iron(II) complexes, [(TpPh2)FeII(benzilate)] (1) and [(TpPh2)(FeII)2(NPP)3] (2) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate, NPP-H = α-isonitrosopropiophenone), of a monoanionic facial N3 ligand in the O2-dependent oxidation of oximes is reported. The mononuclear complex 1 reacts with dioxygen to decarboxylate the iron-coordinated benzilate. The oximate-bridged dinuclear complex (2), which contains a high-spin (TpPh2)FeII unit and a low-spin iron(II)-oximate unit, activates dioxygen at the high-spin iron(II) center. Both the complexes exhibit the oxidative transformation of oximes to the corresponding carbonyl compounds with the incorporation of one oxygen atom from dioxygen. In the oxidation process, the oxime units are converted to nitric oxide (NO) or nitroxyl (HNO). The iron(II)-benzilate complex (1) reacts with oximes to afford HNO, whereas the iron(II)-oximate complex (2) generates NO. The results described here suggest that the oxidative transformation of oximes to NO/HNO follows different pathways depending upon the nature of co-ligand/reductant.Graphic abstract.


Asunto(s)
Compuestos Ferrosos/química , Óxido Nítrico/química , Oximas/química , Oxígeno/química , Complejos de Coordinación/química , Hemo/química , Ligandos , Oxidación-Reducción
14.
Dalton Trans ; 48(46): 17355-17363, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31730150

RESUMEN

Two monoanionic nickel complexes Bu4N[Ni(LSeO)2] (1) and Bu4N[Ni(LSO)2] (2) (H2LSeO = 3,5-di-tert-butyl-2-hydroxyselenophenol and H2LSO = 3,5-di-tert-butyl-2-hydroxythiophenol) were synthesised by reductive cleavage of the respective 2,2'-dichalcogenobis(4,6-di-tert-butylphenol) (H2LX-X; X = Se, S) with nickel(ii) salts. The crystal structures of 1 and 2 confirm the reductive X-X bond cleavage with the concomitant formation of the corresponding monoanionic square planar complex, where quinoidal distortions of the aromatic rings are observed. The monoanionic complexes (1 and 2) are paramagnetic (S = 1/2), exhibiting rhombic EPR signals, and the g anisotropies are well correlated with the spin-orbit coupling of chalcogenides. The spectral data indicate that the ligands H2LXO in 1 and 2 are redox non-innocent and stabilise the square planar S = 1/2 nickel complexes with a highly delocalised unpaired electron. DFT calculations further support the delocalised electronic structures of the nickel complexes.

15.
Dalton Trans ; 48(45): 16993-17004, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31691691

RESUMEN

The influence of supporting ligands and co-ligands on the dioxygen reactivity of a series of iron(ii) complexes, [(6-Me3-TPA)FeII(GN-H)]+ (1), [(6-Me3-TPA)FeII(DHN-H)]+ (1a), [(BPMEN)FeII(GN-H)]+ (2), [(BPMEN)FeII(DHN-H)]+ (2a), [(TBimA)FeII(GN-H)]+ (3), and [(TBimA)FeII(DHN-H)]+ (3a) (GN-H2 = 2,5-dihydroxybenzoic acid and DHN-H2 = 1,4-dihydroxy-2-naphthoic acid) of N4 ligands, is presented. The iron(ii)-gentisate complexes react with dioxygen to afford the corresponding iron(iii) species. On the contrary, DHN-H undergoes oxidative C-C coupling to form [2,2'-binaphthalene]-1,1',4,4'-tetrone 3-hydroxy-3'-carboxylic acid (BNTHC) on 1a, and [2,2'-binaphthalene]-1,1',4,4'-tetrone 3,3'-dicarboxylic acid (BNTD) on 2a and 3a. In each case, the reaction proceeds through an iron(iii)-DHN species. The X-ray single crystal structures of [(6-Me3-TPA)FeII(BNTD)] (1Ox) and [(BPMEN)FeII(BNTD)] (2Ox) confirm the coupling of two DHN-H molecules. The formation of iron(iii) product without any coupling of co-ligand from the complexes, [(BPMEN)FeII(HNA)]+ (2b) and [(BPMEN)FeII(5-OMeSA)]+ (2c) (HNA = 1-hydroxy-2-naphthoate, 5-OMeSA = 5-methoxysalicylate) confirms the importance of para-hydroxy group for the coupling reaction. The unusual coupling of DHN-H by the iron(ii) complexes of the neutral N4 ligands is distinctly different from the oxygenolytic aromatic C-C cleavage of DHN by the iron(ii) complex of a facial N3 ligand.

16.
Inorg Chem ; 58(15): 9713-9722, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31339041

RESUMEN

The oxomanganese(IV) complex [(dpaq)MnIV(O)]+-Mn+ (1-Mn+, Mn+ = redox-inactive metal ion, H-dpaq = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-ylacetamide), generated in the reaction of the precursor hydroxomanganese(III) complex 1 with iodosylbenzene (PhIO) in the presence of redox-inactive metal triflates, has recently been reported. Herein the generation of the same oxomanganese(IV) species from 1 using various combinations of protic acids and oxidants at 293 K is reported. The reaction of 1 with triflic acid and the one-electron-oxidizing agent [RuIII(bpy)3]3+ leads to the formation of the oxomanganese(IV) complex. The putative species has been identified as a mononuclear high-spin (S = 3/2) nonheme oxomanganese(IV) complex (1-O) on the basis of mass spectrometry, Raman spectroscopy, EPR spectroscopy, and DFT studies. The optical absorption spectrum is well reproduced by theoretical calculations on an S = 3/2 ground spin state of the complex. Isotope labeling studies confirm that the oxygen atom in the oxomanganese(IV) complex originates from the MnIII-OH precursor and not from water. A mechanistic investigation reveals an initial protonation step forming the MnIII-OH2 complex, which then undergoes one-electron oxidation and subsequent deprotonations to form the oxomanganese(IV) transient, avoiding the requirements of either oxo-transfer agents or redox-inactive metal ions. The MnIV-oxo complex cleaves the C-H bonds of xanthene (k2 = 5.5 M-1 s-1), 9,10-DHA (k2 = 3.9 M-1 s-1), 1,4-CHD (k2 = 0.25 M-1 s-1), and fluorene (k2 = 0.11 M-1 s-1) at 293 K. The electrophilic character of the nonheme MnIV-oxo complex is demonstrated by a large negative ρ value of 2.5 in the oxidation of para-substituted thioanisoles. The complex emerges as the "most reactive" among the existing MnIV/V-oxo complexes bearing anionic ligands.

17.
Angew Chem Int Ed Engl ; 58(36): 12534-12539, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31246329

RESUMEN

The reactivity of a mononuclear high-spin iron(III)-alkylperoxo intermediate [FeIII (t-BuLUrea )(OOCm)(OH2 )]2+ (2), generated from [FeII (t-BuLUrea )(H2 O)(OTf)](OTf) (1) [t-BuLUrea =1,1'-(((pyridin-2-ylmethyl)azanediyl)bis(ethane-2,1-diyl))bis(3-(tert-butyl)urea), OTf=trifluoromethanesulfonate] with cumyl hydroperoxide (CmOOH), toward the C-H and C=C bonds of hydrocarbons is reported. 2 oxygenates the strong C-H bonds of aliphatic substrates with high chemo- and stereoselectivity in the presence of 2,6-lutidine. While 2 itself is a sluggish oxidant, 2,6-lutidine assists the heterolytic O-O bond cleavage of the metal-bound alkylperoxo, giving rise to a reactive metal-based oxidant. The roles of the urea groups on the supporting ligand, and of the base, in directing the selective and catalytic oxygenation of hydrocarbon substrates by 2 are discussed.

18.
Inorg Chem ; 58(8): 4828-4841, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30916560

RESUMEN

An iron(II)-benzilate complex [(TPASH)FeII(benzilate)]ClO4@C8Au (2) (TPASH = 11-((6-((bis(pyridin-2-ylmethyl)amino)methyl)pyridin-2-yl)methoxy)undecane-1-thiol) immobilized on octanethiol stabilized gold nanoparticles (C8Au) of core diameter less than 5 nm has been prepared to evaluate its reactivity toward O2-dependent oxidations compared to a nonimmobilized complex [(TPA-O-Allyl)FeII(benzilate)]ClO4 (1a) (TPA-O-Allyl = N-((6-(allyloxymethyl)pyridin-2-yl)methyl)(pyridin-2-yl)- N-(pyridin-2-ylmethyl)methanamine). X-ray crystal structure of the nonimmobilized complex 1a reveals a six-coordinate iron(II) center in which the TPA-O-Allyl acts as a pentadentate ligand and the benzilate anion binds in monodentate fashion. Both the complexes (1a and 2) react with dioxygen under ambient conditions to form benzophenone as the sole product through decarboxylation of the coordinated benzilate. Interception studies reveal that a nucleophilic iron-oxygen intermediate is formed in the decarboxylation reaction. The oxidants from both the complexes are able to carry out oxo atom transfer reactions. The immobilized complex 2 not only performs faster decarboxylation but also exhibits enhanced reactivity in oxo atom transfer to sulfides. Importantly, the immobilized complex 2, unlike 1a, displays catalytic turnovers in sulfide oxidation. However, the complexes are not efficient to carry out cis-dihydroxylation of alkenes. Although the immobilized complex yields a slightly higher amount of cis-diol from 1-octene, restricted access of dioxygen and substrates at the coordinatively saturated metal centers of the complexes likely makes the resulting iron-oxygen species less active in oxygen atom transfer to alkenes. The results implicate that surface immobilized nonheme iron complexes containing accessible coordination sites would exhibit better reactivity in O2-dependent oxygenation reactions.

19.
Inorg Chem ; 58(3): 1862-1876, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30644733

RESUMEN

A mononuclear iron(II) complex [FeII(N4PyMe2)(OTf)](OTf)(1), supported by a new pentadentate ligand, bis(6-methylpyridin-2-yl)- N, N-bis((pyridin-2-yl)methyl)methanamine (N4PyMe2), has been isolated and characterized. Introduction of methyl groups in the 6-position of two pyridine rings makes the N4PyMe2 a weaker field ligand compared to the parent N4Py ligand. Complex 1 is high-spin in the solid state and converts to [FeII(N4PyMe2)(CH3CN)](OTf)2 (1a) in acetonitrile solution. The iron(II) complex in acetonitrile displays temperature-dependent spin-crossover behavior over a wide range of temperature. In its reaction with m-CPBA or oxone in acetonitrile at -10 °C, the iron(II) complex converts to an iron(IV)-oxo species, [FeIV(O)(N4PyMe2)]2+ (2). Complex 2 exhibits the Mössbauer parameters δ = 0.05 mm/s and Δ EQ = 0.62 mm/s, typical of N-ligated S = 1 iron(IV)-oxo species. The iron(IV)-oxo complex has a half-life of only 14 min at 25 °C and is reactive toward oxygen-atom-transfer and hydrogen-atom-transfer (HAT) reactions. Compared to the parent complex [FeIV(O)(N4Py)]2+, 2 is more reactive in oxidizing thioanisole and oxygenates the C-H bonds of aliphatic substrates including that of cyclohexane. The enhanced reactivity of 2 toward cyclohexane results from the involvement of the S = 2 transition state in the HAT pathway and a lower triplet-quintet splitting compared to [FeIV(O)(N4Py)]2+, as supported by DFT calculations. The second-order rate constants for HAT by 2 is well correlated with the C-H bond dissociation energies of aliphatic substrates. Surprisingly, the slope of this correlation is different from that of [FeIV(O)(N4Py)]2+, and 2 is more reactive only in the case of strong C-H bonds (>86 kcal/mol), but less reactive in the case of weaker C-H bonds. Using oxone as the oxidant, the iron(II) complex displays catalytic oxidations of substrates with low activity but with good selectivity.

20.
Inorg Chem ; 57(16): 10160-10169, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30070832

RESUMEN

A mononuclear iron(II)-α-hydroxy acid complex [(TpPh,Me)FeII(benzilate)] (TpPh,Me = hydrotris(3-phenyl-5-methylpyrazol-1-yl)borate) of a facial tridentate ligand has been isolated and characterized to explore its catalytic efficiency for aerial oxidation of organic substrates. In the reaction between the iron(II)-benzilate complex and O2, the metal-coordinated benzilate is stoichiometrically converted to benzophenone with concomitant reduction of dioxygen on the iron center. Based on the results from interception experiments and labeling studies, different iron-oxygen oxidants are proposed to generate in situ in the reaction pathway depending upon the absence or presence of an external additive (such as protic acid or Lewis acid). The five-coordinate iron(II) complex catalytically cis-dihydroxylates olefins and oxygenates the C-H bonds of aliphatic substrates using O2 as the terminal oxidant. The iron(II) complex exhibits better catalytic activity in the presence of a Lewis acid.


Asunto(s)
Alcanos/química , Alquenos/química , Complejos de Coordinación/química , Compuestos Ferrosos/química , Hierro/química , Oxígeno/química , Alcoholes/síntesis química , Bencilatos/síntesis química , Bencilatos/química , Catálisis , Complejos de Coordinación/síntesis química , Compuestos Ferrosos/síntesis química , Hidroxilación , Ligandos , Modelos Químicos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA