Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 27(1): e14353, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110234

RESUMEN

Aspen sapling recruitment increased as browsing by elk decreased, following the 1995-96 reintroduction of wolves in Yellowstone National Park. We address claims by Brice et al. (2021) that previous studies exaggerated recent aspen recovery. We conclude that their results actually supported previous work showing a trophic cascade benefiting aspen.


Asunto(s)
Ciervos , Lobos , Animales , Conducta Predatoria
2.
Ecol Evol ; 13(8): e10369, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37649706

RESUMEN

The American bison (Bison bison) is a species that strongly interacts with its environment, yet the effects of this large herbivore on quaking aspen (Populus tremuloides) have received little study. We documented bison breaking the stems of aspen saplings (young aspen >2 m tall and ≤5 cm in diameter at breast height) and examined the extent of this effect in northern Yellowstone National Park (YNP). Low densities of Rocky Mountain elk (Cervus canadensis) after about 2004 created conditions conducive for new aspen recruitment in YNP's northern ungulate winter range (northern range). We sampled aspen saplings at local and landscape scales, using random sampling plots in 87 randomly selected aspen stands. Across the YNP northern range, we found that 18% of sapling stems had been broken. The causal attribution to bison was supported by multiple lines of evidence: (1) most broken saplings were in areas of high bison and low elk density; (2) saplings were broken in summer when elk were not foraging on them; (3) we directly observed bison breaking aspen saplings; and (4) mixed-effects modeling showed a positive association between scat density of bison and the proportion of saplings broken. In a stand heavily used by bison, most aspen saplings had been broken, and portions of the stand were cleared of saplings that were present in previous sampling in 2012. Bison numbers increased more than fourfold between 2004 and 2015, and their ecosystem effects have similarly increased, limiting and in some places reversing the nascent aspen recovery. This situation is further complicated by political constraints that prevent bison from dispersing to areas outside the park. Thus, one important conservation goal, the preservation of bison, is affecting another long-term conservation goal, the recovery of aspen and other deciduous woody species in northern Yellowstone.

4.
Sci Adv ; 1(4): e1400103, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26601172

RESUMEN

Large wild herbivores are crucial to ecosystems and human societies. We highlight the 74 largest terrestrial herbivore species on Earth (body mass ≥100 kg), the threats they face, their important and often overlooked ecosystem effects, and the conservation efforts needed to save them and their predators from extinction. Large herbivores are generally facing dramatic population declines and range contractions, such that ~60% are threatened with extinction. Nearly all threatened species are in developing countries, where major threats include hunting, land-use change, and resource depression by livestock. Loss of large herbivores can have cascading effects on other species including large carnivores, scavengers, mesoherbivores, small mammals, and ecological processes involving vegetation, hydrology, nutrient cycling, and fire regimes. The rate of large herbivore decline suggests that ever-larger swaths of the world will soon lack many of the vital ecological services these animals provide, resulting in enormous ecological and social costs.

5.
Ecology ; 96(1): 252-63, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26236910

RESUMEN

To investigate the extent and causes of recent quaking aspen (Populus tremuloides) recruitment in northern Yellowstone National Park, we measured browsing intensity and height of young aspen in 87 randomly selected aspen stands in 2012, and compared our results to similar data collected in 1997-1998. We also examined the relationship between aspen recovery and the distribution of Rocky Mountain elk (Cervus elaphus) and bison (Bison bison) on the Yellowstone northern ungulate winter range, using ungulate fecal pile densities and annual elk count data. In 1998, 90% of young aspen were browsed and none were taller-than 200 cm, the height at which aspen begin to escape from elk browsing. In 2012, only 37% in the east and 63% in the west portions of the winter range were browsed, and 65% of stands in the east had young aspen taller than 200 cm. Heights of young aspen were inversely related to browsing intensity, with the least browsing and greatest heights in the eastern portion of the range, corresponding with recent changes in elk density and distribution. In contrast with historical elk distribution (1930s-1990s), the greatest densities of elk recently (2006-2012) have been north of the park boundary (approximately 5 elk/km2), and in the western part of the range (2-4 elk/km2), with relatively few elk in the eastern portion of the range (<2 elk/km2), even in mild winters. This redistribution of elk and decrease in density inside the park, and overall reduction in elk numbers, explain why many aspen stands have begun to recover. Increased predation pressure following the reintroduction of gray wolves (Canis lupius) in 1995-1996 played a role in these changing elk population dynamics, interacting with other influences including increased predation by bears (Ursus spp.), competition with an expanding bison population, and shifting patterns of human land use and hunting outside the park. The resulting new aspen recruitment is evidence of a landscape-scale trophic cascade in which a resurgent large carnivore community, combined with other ecological changes, has benefited aspen through effects on ungulate prey.


Asunto(s)
Bison , Ciervos , Cadena Alimentaria , Herbivoria , Populus , Animales , Clima , Montana , Dinámica Poblacional , Conducta Predatoria , Wyoming
6.
Environ Manage ; 55(4): 930-42, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25694035

RESUMEN

We assessed the effects of the elimination of livestock in riparian systems at Hart Mountain National Antelope Refuge in southeastern Oregon, 23 years after the removal of cattle grazing, using 64 photos taken before grazing was removed compared with later retake photos. Two methods were used for this assessment: (1) a qualitative visual method comparing seven cover types and processes and (2) a new quantitative method of inserting digital line transects into photos. Results indicated that channel widths and eroding banks decreased in 64 and 73% of sites, respectively. We found a 90% decrease in the amount of bare soil (P < 0.001) and a 63% decrease in exposed channel (P < 0.001) as well as a significant increase in the cover of grasses/sedges/forbs (15% increase, P = 0.037), rushes (389% increase, P = 0.014), and willow (388% increase, P < 0.001). We also assessed the accuracy of the new method of inserting digital line transects into photo pairs. An overall accuracy of 91% (kappa 83%) suggests that digital line transects can be a useful tool for quantifying vegetation cover from photos. Our results indicate that the removal of cattle can result in dramatic changes in riparian vegetation, even in semi-arid landscapes and without replanting or other active restoration efforts.


Asunto(s)
Crianza de Animales Domésticos , Bovinos , Conservación de los Recursos Naturales , Ecosistema , Plantas , Animales , Oregon , Investigación Cualitativa , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...