Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38307624

RESUMEN

Severe presentations of malaria emerge as Plasmodium (P.) spp. parasites invade and lyse red blood cells (RBC), producing extracellular hemoglobin (HB), from which labile heme is released. Here, we tested whether scavenging of extracellular HB and/or labile heme, by haptoglobin (HP) and/or hemopexin (HPX), respectively, counter the pathogenesis of severe presentations of malaria. We found that circulating labile heme is an independent risk factor for cerebral and non-cerebral presentations of severe P. falciparum malaria in children. Labile heme was negatively correlated with circulating HP and HPX, which were, however, not risk factors for severe P. falciparum malaria. Genetic Hp and/or Hpx deletion in mice led to labile heme accumulation in plasma and kidneys, upon Plasmodium infection This was associated with higher incidence of mortality and acute kidney injury (AKI) in ageing but not adult Plasmodium-infected mice, and was corroborated by an inverse correlation between heme and HPX with serological markers of AKI in P. falciparum malaria. In conclusion, HP and HPX act in an age-dependent manner to prevent the pathogenesis of severe presentation of malaria in mice and presumably in humans.


Asunto(s)
Lesión Renal Aguda , Malaria , Niño , Humanos , Ratones , Animales , Hemo , Hemoglobinas , Haptoglobinas
2.
Parasitol Res ; 122(3): 729-737, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36694092

RESUMEN

Cerebral malaria (CM) is a severe neurological condition caused by Plasmodium falciparum. Disruption of the brain-blood barrier (BBB) is a key pathological event leading to brain edema and vascular leakage in both humans and in the mouse model of CM. Interactions of brain endothelial cells with infected red blood cells (iRBCs) and with circulating inflammatory mediators and immune cells contribute to BBB dysfunction in CM. Adjunctive therapies for CM aim at preserving the BBB to prevent neurologic deficits. Experimental animal and cellular models are essential to develop new therapeutic strategies. However, in mice, the disease develops rapidly, which offers a very narrow time window for testing the therapeutic potential of drugs acting in the BBB. Here, we establish a brain endothelial cell barrier whose disturbance can be monitored by several parameters. Using this system, we found that incubation with iRBCs and with extracellular particles (EPs) released by iRBCs changes endothelial cell morphology, decreases the tight junction protein zonula occludens-1 (ZO-1), increases the gene expression of the intercellular adhesion molecule 1 (ICAM-1), and induces a significant reduction in transendothelial electrical resistance (TEER) with increased permeability. We propose this in vitro experimental setup as a straightforward tool to investigate molecular interactions and pathways causing endothelial barrier dysfunction and to test compounds that may target BBB and be effective against CM. A pre-selection of the effective compounds that strengthen the resistance of the brain endothelial cell barrier to Plasmodium-induced blood factors in vitro may increase the likelihood of their efficacy in preclinical disease mouse models of CM and in subsequent clinical trials with patients.


Asunto(s)
Células Endoteliales , Malaria Cerebral , Humanos , Animales , Ratones , Encéfalo/metabolismo , Barrera Hematoencefálica , Malaria Cerebral/tratamiento farmacológico , Malaria Cerebral/metabolismo , Plasmodium falciparum/fisiología
3.
Proc Natl Acad Sci U S A ; 119(36): e2206327119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037380

RESUMEN

Cerebral malaria (CM) is a life-threatening form of Plasmodium falciparum infection caused by brain inflammation. Brain endothelium dysfunction is a hallmark of CM pathology, which is also associated with the activation of the type I interferon (IFN) inflammatory pathway. The molecular triggers and sensors eliciting brain type I IFN cellular responses during CM remain largely unknown. We herein identified the stimulator of interferon response cGAMP interactor 1 (STING1) as the key innate immune sensor that induces Ifnß1 transcription in the brain of mice infected with Plasmodium berghei ANKA (Pba). This STING1/IFNß-mediated response increases brain CXCL10 governing the extent of brain leukocyte infiltration and blood-brain barrier (BBB) breakdown, and determining CM lethality. The critical role of brain endothelial cells (BECs) in fueling type I IFN-driven brain inflammation was demonstrated in brain endothelial-specific IFNß-reporter and STING1-deficient Pba-infected mice, which were significantly protected from CM lethality. Moreover, extracellular particles (EPs) released from Pba-infected erythrocytes activated the STING1-dependent type I IFN response in BECs, a response requiring intracellular acidification. Fractionation of the EPs enabled us to identify a defined fraction carrying hemoglobin degradation remnants that activates STING1/IFNß in the brain endothelium, a process correlated with heme content. Notably, stimulation of STING1-deficient BECs with heme, docking experiments, and in vitro binding assays unveiled that heme is a putative STING1 ligand. This work shows that heme resultant from the parasite heterotrophic activity operates as an alarmin, triggering brain endothelial inflammatory responses via the STING1/IFNß/CXCL10 axis crucial to CM pathogenesis and lethality.


Asunto(s)
Encéfalo , Hemo , Interferón beta , Malaria Cerebral , Proteínas de la Membrana , Animales , Encéfalo/parasitología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/parasitología , Endotelio/inmunología , Endotelio/parasitología , Hemo/metabolismo , Interferón beta/inmunología , Malaria Cerebral/inmunología , Malaria Cerebral/parasitología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Plasmodium berghei/metabolismo , Activación Transcripcional/inmunología
4.
Front Neurosci ; 14: 614, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625056

RESUMEN

Microglial cells have emerged as crucial players in synaptic plasticity during development and adulthood, and also in neurodegenerative and neuroinflammatory conditions. Here we found that decreased levels of Sirtuin 2 (Sirt2) deacetylase in microglia affects hippocampal synaptic plasticity under inflammatory conditions. The results show that long-term potentiation (LTP) magnitude recorded from hippocampal slices of wild type mice does not differ between those exposed to lipopolysaccharide (LPS), a pro-inflammatory stimulus, or BSA. However, LTP recorded from hippocampal slices of microglial-specific Sirt2 deficient (Sirt2-) mice was significantly impaired by LPS. Importantly, LTP values were restored by memantine, an antagonist of N-methyl-D-aspartate (NMDA) receptors. These results indicate that microglial Sirt2 prevents NMDA-mediated excitotoxicity in hippocampal slices in response to an inflammatory signal such as LPS. Overall, our data suggest a key-protective role for microglial Sirt2 in mnesic deficits associated with neuroinflammation.

5.
Front Immunol ; 9: 3100, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30761156

RESUMEN

Cerebral malaria (CM) is a life-threatening neurological syndrome caused by Plasmodium falciparum infection afflicting mainly children in Africa. Current pathogenesis models implicate parasite and host-derived factors in impairing brain vascular endothelium (BVE) integrity. Sequestration of Plasmodium-infected red blood cells (iRBCs) in brain microvessels is a hallmark of CM pathology. However, the precise mechanisms driving loss of blood-brain barrier (BBB) function with consequent brain injury are still unsettled and it is plausible that distinct pathophysiology trajectories are involved. Studies in humans and in the mouse model of CM indicate that inflammatory reactions intertwined with microcirculatory and coagulation disturbances induce alterations in vascular permeability and impair BBB integrity. Yet, the role of BVE as initiator of immune responses against parasite molecules and iRBCs is largely unexplored. Brain endothelial cells express pattern recognition receptors (PRR) and are privileged sensors of blood-borne infections. Here, we focus on the hypothesis that innate responses initiated by BVE and subsequent interactions with immune cells are critical to trigger local effector immune functions and induce BBB damage. Uncovering mechanisms of BVE involvement in sensing Plasmodium infection, recruiting of immune cells and directing immune effector functions could reveal pharmacological targets to promote BBB protection with potential applications in CM clinical management.


Asunto(s)
Barrera Hematoencefálica/inmunología , Endotelio Vascular/inmunología , Inmunidad Innata , Malaria Cerebral/inmunología , Plasmodium falciparum/inmunología , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/inmunología , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Interacciones Huésped-Parásitos/inmunología , Humanos , Malaria Cerebral/tratamiento farmacológico , Malaria Cerebral/parasitología , Microcirculación/inmunología
6.
Neuromolecular Med ; 19(1): 113-121, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27535567

RESUMEN

The protein α-synuclein (α-Syn) interferes with glucose and lipid uptake and also activates innate immune cells. However, it remains unclear whether α-Syn or its familial mutant forms contribute to metabolic alterations and inflammation in synucleinopathies, such as Parkinson's disease (PD). Here, we address this issue in transgenic mice for the mutant A53T human α-Syn (α-SynA53T), a mouse model of synucleinopathies. At 9.5 months of age, mice overexpressing α-SynA53T (homozygous) had a significant reduction in weight, exhibited improved locomotion and did not show major motor deficits compared with control transgenic mice (heterozygous). At 17 months of age, α-SynA53T overexpression promoted general reduction in grip strength and deficient hindlimb reflex and resulted in severe disease and mortality in 50 % of the mice. Analysis of serum metabolites further revealed decreased levels of cholesterol, triglycerides and non-esterified fatty acids (NEFA) in α-SynA53T-overexpressing mice. In fed conditions, these mice also showed a significant decrease in serum insulin without alterations in blood glucose. In addition, assessment of inflammatory gene expression in the brain showed a significant increase in TNF-α mRNA but not of IL-1ß induced by α-SynA53T overexpression. Interestingly, the brain mRNA levels of Sirtuin 2 (Sirt2), a deacetylase involved in both metabolic and inflammatory pathways, were significantly reduced. Our findings highlight the relevance of the mechanisms underlying initial weight loss and hyperactivity as early markers of synucleinopathies. Moreover, we found that changes in blood metabolites and decreased brain Sirt2 gene expression are associated with motor deficits.


Asunto(s)
Redes y Vías Metabólicas/genética , Actividad Motora/genética , Mutación Missense , Trastornos Parkinsonianos/genética , Mutación Puntual , alfa-Sinucleína/genética , Factores de Edad , Animales , Glucemia/análisis , Peso Corporal/genética , Química Encefálica/genética , Metabolismo Energético/genética , Fuerza de la Mano , Humanos , Insulina/sangre , Lípidos/sangre , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Reflejo Anormal/genética , Prueba de Desempeño de Rotación con Aceleración Constante , Sirtuina 2/biosíntesis , Sirtuina 2/genética , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , alfa-Sinucleína/fisiología
7.
Cell Chem Biol ; 23(7): 849-861, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27427231

RESUMEN

There are currently no disease-modifying therapies for the neurodegenerative disorder Huntington's disease (HD). This study identified novel thiazole-containing inhibitors of the deacetylase sirtuin-2 (SIRT2) with neuroprotective activity in ex vivo brain slice and Drosophila models of HD. A systems biology approach revealed an additional SIRT2-independent property of the lead-compound, MIND4, as an inducer of cytoprotective NRF2 (nuclear factor-erythroid 2 p45-derived factor 2) activity. Structure-activity relationship studies further identified a potent NRF2 activator (MIND4-17) lacking SIRT2 inhibitory activity. MIND compounds induced NRF2 activation responses in neuronal and non-neuronal cells and reduced production of reactive oxygen species and nitrogen intermediates. These drug-like thiazole-containing compounds represent an exciting opportunity for development of multi-targeted agents with potentially synergistic therapeutic benefits in HD and related disorders.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Sirtuina 2/antagonistas & inhibidores , Tiazoles/farmacología , Tiazoles/uso terapéutico , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Drosophila , Enfermedad de Huntington/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Ratas , Sirtuina 2/deficiencia , Sirtuina 2/metabolismo , Relación Estructura-Actividad , Tiazoles/química
8.
PLoS One ; 10(7): e0131904, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26135889

RESUMEN

Sirtuins (Sirts) regulate several cellular mechanisms through deacetylation of several transcription factors and enzymes. Recently, Sirt2 was shown to prevent the development of inflammatory processes and its expression favors acute Listeria monocytogenes infection. The impact of this molecule in the context of chronic infections remains unknown. We found that specific Sirt2 deletion in the myeloid lineage transiently increased Mycobacterium tuberculosis load in the lungs and liver of conditional mice. Sirt2 did not affect long-term infection since no significant differences were observed in the bacterial burden at days 60 and 120 post-infection. The initial increase in M. tuberculosis growth was not due to differences in inflammatory cell infiltrates in the lung, myeloid or CD4+ T cells. The transcription levels of IFN-γ, IL-17, TNF, IL-6 and NOS2 were also not affected in the lungs by Sirt2-myeloid specific deletion. Overall, our results demonstrate that Sirt2 expression has a transitory effect in M. tuberculosis infection. Thus, modulation of Sirt2 activity in vivo is not expected to affect chronic infection with M. tuberculosis.


Asunto(s)
Regulación de la Expresión Génica , Mycobacterium tuberculosis/metabolismo , Células Mieloides/metabolismo , Sirtuina 2/metabolismo , Tuberculosis Pulmonar/metabolismo , Animales , Linfocitos T CD4-Positivos/microbiología , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Eliminación de Gen , Inflamación , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Hígado/microbiología , Pulmón/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Tuberculosis Pulmonar/microbiología , Factor de Necrosis Tumoral alfa/metabolismo
9.
Cell Mol Life Sci ; 71(20): 3969-85, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25008043

RESUMEN

Microglial cells contribute to normal function of the central nervous system (CNS). Besides playing a role in the innate immunity, they are also involved in neuronal plasticity and homeostasis of the CNS. While microglial cells get activated and undergo phenotypic changes in different disease contexts, they are far from being the "villains" in the CNS. Mounting evidence indicates that microglial dysfunction can exacerbate the pathogenesis of several diseases in the CNS. Several molecular mechanisms tightly regulate the production of inflammatory and toxic factors released by microglia. These mechanisms involve the interaction with other glial cells and neurons and the fine regulation of signaling and transcription activation pathways. The purpose of this review is to discuss microglia activation and to highlight the molecular pathways that can counteract the detrimental role of microglia in several neurologic diseases. Recent work presented in this review support that the understanding of microglial responses can pave the way to design new therapies for inflammatory diseases of the CNS.


Asunto(s)
Inflamación/metabolismo , Microglía/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/patología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Plasticidad Neuronal/fisiología , Transducción de Señal/fisiología , Activación Transcripcional
10.
Curr Drug Targets ; 11(10): 1270-80, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20840069

RESUMEN

Aging has been a subject of interest since primordial times. More recently, it became clear that aging is the major known risk factor for several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease and Huntington's disease. A major focus in the field of aging is to examine whether the genetic regulators of lifespan also regulate the trigger and/or progression of age-related disorders. Sirtuins, which belong to the Sir2 family of NAD(+)-dependent deacetylases, are known to regulate longevity in yeast, worms, and flies. In mammals, there are seven homologs of the yeast Sir2, Sirt1-7. Therefore, the challenge now is to unravel howthe seven mammalian Sir2 proteins communicate to regulate the cross talk between aging and the onset and progression of age-related disorders. Here, we review how sirtuins contribute for aging and, in particular, for neurodegeneration and how they are becoming attractive targets for therapeutic intervention.


Asunto(s)
Envejecimiento/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Sirtuinas/metabolismo , Envejecimiento/genética , Animales , Progresión de la Enfermedad , Sistemas de Liberación de Medicamentos , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Factores de Riesgo
11.
J Neuroinflammation ; 5: 43, 2008 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-18844999

RESUMEN

BACKGROUND: Microglia are macrophage-like cells that constantly sense the microenvironment within the central nervous system (CNS). In the event of neuronal stress or injury, microglial cells rapidly react and change their phenotype. This response may lead to a deleterious type of microglial activation, which is often associated with neuroinflammation and neurotoxicity in several neuropathological conditions. We investigated the molecular mechanisms underlying triggering of microglial activation by necrotic neuronal damage. METHODS: Primary cultures of microglia were used to study the effect of necrotic neurons on microglial inflammatory responses and toxicity towards cerebellar granule neurons (CGN). The mouse hippocampal cell line, HT22, was used in this study as the main source of necrotic neurons to stimulate microglia. To identify the signal transduction pathways activated in microglia, primary microglial cultures were obtained from mice deficient in Toll-like receptor (TLR) -2, -4, or in the TLR adapter protein MyD88. RESULTS: Necrotic neurons, but not other necrotic cell types, induced microglial activation which was characterized by up-regulation of: i) MHC class II; ii) co-stimulatory molecules, i.e. CD40 and CD24; iii) beta2 integrin CD11b; iii) pro-inflammatory cytokines, i.e. interleukin 6 (IL-6), IL-12p40 and tumor-necrosis factor (TNF); iv) pro-inflammatory enzymes such as nitric oxide synthase (iNOS, type II NOS), indoleamine 2,3-dioxygenase (IDO) and cyclooxygenase-2 (COX-2) and increased microglial motility. Moreover, microglia-conditioned medium (MCM) obtained from cultures of activated microglia showed increased neurotoxicity mediated through the N-methyl-D-aspartate receptor (NMDAR). The activation of microglia by necrotic neurons was shown to be dependent on the TLR-associated adapter molecule myeloid differentiation primary response gene (MyD88). Furthermore, MyD88 mediated enhanced neurotoxicity by activated microglia through up-regulation of the expression and activity of glutaminase, an enzyme that produces glutamate, which is an NMDAR agonist. CONCLUSION: These results show that necrotic neurons activate in microglia a MyD88-dependent pathway responsible for a pro-inflammatory response that also leads to increased neurotoxic activity through induction of glutaminase. This finding contributes to better understanding the mechanisms causing increased neuroinflammation and microglial neurotoxicity in a neurodegenerative environment.


Asunto(s)
Encefalitis/etiología , Glutaminasa/metabolismo , Microglía/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Necrosis/complicaciones , Degeneración Nerviosa/complicaciones , Animales , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Citocinas/inmunología , Citocinas/metabolismo , Encefalitis/metabolismo , Encefalitis/fisiopatología , Gliosis/etiología , Gliosis/metabolismo , Gliosis/fisiopatología , Ácido Glutámico/biosíntesis , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/inmunología , Factor 88 de Diferenciación Mieloide/genética , Necrosis/metabolismo , Necrosis/fisiopatología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
12.
J Neurochem ; 107(1): 73-85, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18643872

RESUMEN

Glial cells and neurons are in constant reciprocal signalling both under physiological and neuropathological conditions. Microglial activation is often associated with neuronal death during inflammation of the CNS, although microglial cells are also known to exert a neuroprotective role. In this work, we investigated the interplay between cerebellar granule neurons (CGN) and microglia in the perspective of CGN survival to an excitotoxic stimulus, quinolinic acid (QA), a catabolite of the tryptophan degradation pathway. We observed that CGN succumb to QA challenge via extracellular signal regulated kinase 1 and 2 (ERK) activation. Our data with transgenic mice expressing the natural inhibitor of calpains, calpastatin, indicate that together with cathepsins they mediate QA-induced toxicity acting downstream of the mitogen-activated protein kinase kinase-ERK pathway. Microglial cells are not only resistant to QA but can rescue neurons from QA-mediated toxicity when they are mixed in culture with neurons or by using mixed culture-conditioned medium (MCCM). This effect is mediated via fibroblast growth factor-2 (FGF-2) present in MCCM. FGF-2 is transcriptionally up-regulated in neurons and secreted in the MCCM as a result of neuron-microglia crosstalk. The neuroprotection is associated with the retention of cathepsins in the lysosomes and with transactivation of inducible heat-shock protein 70 downstream of FGF-2. Furthermore, FGF-2 upon release by neurons activates c-jun N-terminal kinase 1 and 2 pathway which also contributes to neuronal survival. We suggest that FGF-2 plays a pivotal role in neuroprotection against QA as an outcome of neuron-microglia interaction.


Asunto(s)
Citoprotección/fisiología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Microglía/metabolismo , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Animales , Encefalopatías/metabolismo , Encefalopatías/fisiopatología , Proteínas de Unión al Calcio/metabolismo , Catepsinas/metabolismo , Comunicación Celular/fisiología , Muerte Celular/fisiología , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Degeneración Nerviosa/fisiopatología , Neuronas/efectos de los fármacos , Neurotoxinas/metabolismo , Neurotoxinas/toxicidad , Técnicas de Cultivo de Órganos , Ácido Quinolínico/metabolismo , Ácido Quinolínico/toxicidad , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología
13.
J Clin Invest ; 117(2): 438-47, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17256058

RESUMEN

Heme oxygenase-1 (HO-1, encoded by HMOX1) dampens inflammatory reactions via the catabolism of heme into CO, Fe, and biliverdin. We report that expression of HO-1 dictates the pathologic outcome of experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). Induction of EAE in Hmox1(-/- )C57BL/6 mice led to enhanced CNS demyelination, paralysis, and mortality, as compared with Hmox1(+/+) mice. Induction of HO-1 by cobalt protoporphyrin IX (CoPPIX) administration after EAE onset reversed paralysis in C57BL/6 and SJL/J mice and disease relapse in SJL/J mice. These effects were not observed using zinc protoporphyrin IX, which does not induce HO-1. CoPPIX protection was abrogated in Hmox1(-/-) C57BL/6 mice, indicating that CoPPIX acts via HO-1 to suppress EAE progression. The protective effect of HO-1 was associated with inhibition of MHC class II expression by APCs and inhibition of Th and CD8 T cell accumulation, proliferation, and effector function within the CNS. Exogenous CO mimicked these effects, suggesting that CO contributes to the protective action of HO-1. In conclusion, HO-1 or exposure to its end product CO counters autoimmune neuroinflammation and thus might be used therapeutically to treat MS.


Asunto(s)
Monóxido de Carbono/farmacología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Hemo-Oxigenasa 1/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Autoinmunidad , Monóxido de Carbono/metabolismo , Encefalomielitis Autoinmune Experimental/prevención & control , Inducción Enzimática , Hemo-Oxigenasa 1/deficiencia , Hemo-Oxigenasa 1/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subgrupos de Linfocitos T/inmunología
14.
J Neuroimmunol ; 163(1-2): 73-83, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15885309

RESUMEN

Although the activation of brain macrophages is associated with both human and mouse cerebral malaria (CM) the relative contributions of the heterogeneous populations of brain macrophages to the disease are unknown. In this work, we dissociate for the first time inflammatory monocytes from resident brain macrophages in mice developing CM when infected with Plasmodium berghei. Based on the differential expression of CD45 in brain macrophage cell populations and by using bone-marrow (BM) chimeras reconstituted with GFP cells we clearly distinguish between blood-derived cells and resident brain cells of hematopoietic origin. FACS and histological analysis reveal that although inflammatory monocytes and CD8+ T cells invade the brain during CM, parenchymal macrophages also undergo morphological changes and over express MHC class I and Sca-1. In addition to the leukocyte sequestration in the brain, in situ proliferation contributes to the expansion of CD8+ T cells during CM. Finally, kinetic analysis of brain cells during infection with P. berghei demonstrates that activation of parenchymal macrophages precedes leukocyte sequestration in the brain vasculature. Thus, our results reveal the phenotype of activation of brain macrophages during CM showing that parenchymal brain macrophages are activated before overwhelming brain inflammation. These results further suggest that brain macrophages may contribute to the local proliferation of CD8+ T cells that culminate in death of mice with CM syndrome.


Asunto(s)
Encéfalo/citología , Encéfalo/inmunología , Linfocitos T CD8-positivos/inmunología , Movimiento Celular/inmunología , Proliferación Celular , Leucocitos/inmunología , Activación de Macrófagos/inmunología , Malaria Cerebral/inmunología , Animales , Linfocitos T CD8-positivos/patología , Leucocitos/patología , Malaria Cerebral/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
15.
Microbiology (Reading) ; 150(Pt 5): 1507-1518, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15133112

RESUMEN

Treatment of mouse macrophages with picolinic acid (PA) and gamma-interferon (IFNgamma) led to the restriction of Mycobacterium avium proliferation concomitant with the sequential acquisition of metabolic changes typical of apoptosis, mitochondrial depolarization, annexin V staining and caspase activation, over a period of up to 5 days. However, triggering of cell death by ATP, staurosporine or H(2)O(2) failed to affect mycobacterial viability. In contrast to untreated macrophages where extensive interactions between phagosomes and endosomes were observed, phagosomes from treated macrophages lost the ability to acquire endosomal dextran. N-Acetylcysteine was able to revert both the anti-mycobacterial activity of treated macrophages as well as the block in phagosome-endosome interactions. The treatment, however, induced only a minor increase in the acquisition of lysosomal markers, namely Lamp-1, and did not increase to any great extent the acidification of the phagosomes. These data thus suggest that the anti-mycobacterial activity of PA and IFNgamma depends on the interruption of intracellular vesicular trafficking, namely the blocking of acquisition of endosomal material by the microbe.


Asunto(s)
Apoptosis , Interferón gamma/farmacología , Activación de Macrófagos/efectos de los fármacos , Mycobacterium avium/efectos de los fármacos , Mycobacterium avium/crecimiento & desarrollo , Ácidos Picolínicos/farmacología , Animales , Células Cultivadas , Endosomas/efectos de los fármacos , Endosomas/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Fagosomas/efectos de los fármacos , Fagosomas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA