Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Radiat Res ; 199(6): 556-570, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37018160

RESUMEN

After large-scale radiation accidents where many individuals are suspected to be exposed to ionizing radiation, biological and physical retrospective dosimetry assays are important tools to aid clinical decision making by categorizing individuals into unexposed/minimally, moderately or highly exposed groups. Quality-controlled inter-laboratory comparisons of simulated accident scenarios are regularly performed in the frame of the European legal association RENEB (Running the European Network of Biological and Physical retrospective Dosimetry) to optimize international networking and emergency readiness in case of large-scale radiation events. In total 33 laboratories from 22 countries around the world participated in the current RENEB inter-laboratory comparison 2021 for the dicentric chromosome assay. Blood was irradiated in vitro with X rays (240 kVp, 13 mA, ∼75 keV, 1 Gy/min) to simulate an acute, homogeneous whole-body exposure. Three blood samples (no. 1: 0 Gy, no. 2: 1.2 Gy, no. 3: 3.5 Gy) were sent to each participant and the task was to culture samples, to prepare slides and to assess radiation doses based on the observed dicentric yields from 50 manually or 150 semi-automatically scored metaphases (triage mode scoring). Approximately two-thirds of the participants applied calibration curves from irradiations with γ rays and about 1/3 from irradiations with X rays with varying energies. The categorization of the samples in clinically relevant groups corresponding to individuals that were unexposed/minimally (0-1 Gy), moderately (1-2 Gy) or highly exposed (>2 Gy) was successfully performed by all participants for sample no. 1 and no. 3 and by ≥74% for sample no. 2. However, while most participants estimated a dose of exactly 0 Gy for the sham-irradiated sample, the precise dose estimates of the samples irradiated with doses >0 Gy were systematically higher than the corresponding reference doses and showed a median deviation of 0.5 Gy (sample no. 2) and 0.95 Gy (sample no. 3) for manual scoring. By converting doses estimated based on γ-ray calibration curves to X-ray doses of a comparable mean photon energy as used in this exercise, the median deviation decreased to 0.27 Gy (sample no. 2) and 0.6 Gy (sample no. 3). The main aim of biological dosimetry in the case of a large-scale event is the categorization of individuals into clinically relevant groups, to aid clinical decision making. This task was successfully performed by all participants for the 0 Gy and 3.5 Gy samples and by 74% (manual scoring) and 80% (semiautomatic scoring) for the 1.2 Gy sample. Due to the accuracy of the dicentric chromosome assay and the high number of participating laboratories, a systematic shift of the dose estimates could be revealed. Differences in radiation quality (X ray vs. γ ray) between the test samples and the applied dose effect curves can partly explain the systematic shift. There might be several additional reasons for the observed bias (e.g., donor effects, transport, experimental conditions or the irradiation setup) and the analysis of these reasons provides great opportunities for future research. The participation of laboratories from countries around the world gave the opportunity to compare the results on an international level.


Asunto(s)
Aberraciones Cromosómicas , Liberación de Radiactividad Peligrosa , Humanos , Estudios Retrospectivos , Radiometría/métodos , Bioensayo/métodos , Cromosomas , Relación Dosis-Respuesta en la Radiación
2.
Radiat Res ; 199(6): 571-582, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37057983

RESUMEN

The goal of the RENEB inter-laboratory comparison 2021 exercise was to simulate a large-scale radiation accident involving a network of biodosimetry labs. Labs were required to perform their analyses using different biodosimetric assays in triage mode scoring and to rapidly report estimated radiation doses to the organizing institution. This article reports the results obtained with the cytokinesis-block micronucleus assay. Three test samples were exposed to blinded doses of 0, 1.2 and 3.5 Gy X-ray doses (240 kVp, 13 mA, ∼75 keV, 1 Gy/min). These doses belong to 3 triage categories of clinical relevance: a low dose category, for no exposure or exposures inferior to 1 Gy, requiring no direct treatment of subjects; a medium dose category, with doses ranging from 1 to 2 Gy, and a high dose category, after exposure to doses higher than 2 Gy, with the two latter requiring increasing medical attention. After irradiation the test samples (no. 1, no. 2 and no. 3) were sent by the organizing laboratory to 14 centers participating in the micronucleus assay exercise. Laboratories were asked to setup micronucleus cultures and to perform the micronucleus assay in triage mode, scoring 500 binucleated cells manually, or 1,000 binucleated cells in automated/semi-automated mode. One laboratory received no blood samples, but scored pictures from another lab. Based on their calibration curves, laboratories had to provide estimates of the administered doses. The accuracy of the reported dose estimates was further analyzed by the micronucleus assay lead. The micronucleus assay allowed classification of samples in the corresponding clinical triage categories (low, medium, high dose category) in 88% of cases (manual scoring, 88%; semi-automated scoring, 100%; automated scoring, 73%). Agreement between scoring laboratories, assessed by calculating the Fleiss' kappa, was excellent (100%) for semi-automated scoring, good (83%) for manual scoring and poor (53%) for fully automated scoring. Correct classification into triage scoring dose intervals (reference dose ±0.5 Gy for doses ≤2.5 Gy, or reference dose ±1 Gy for doses >2.5 Gy), recommended for triage biodosimetry, was obtained in 79% of cases (manual scoring, 73%; semi-automated scoring, 100%; automated scoring, 67%). The percentage of dose estimates whose 95% confidence intervals included the reference dose was 58% (manual scoring, 48%; semiautomated scoring, 72%; automated scoring, 60%). For the irradiated samples no. 2 and no. 3, a systematic shift towards higher dose estimations was observed. This was also noticed with the other cytogenetic assays in this intercomparison exercise. Accuracy of the rapid triage modality could be maintained when the number of manually scored cells was scaled down to 200 binucleated cells. In conclusion, the micronucleus assay, preferably performed in a semi-automated or manual scoring mode, is a reliable technique to perform rapid biodosimetry analysis in large-scale radiation emergencies.


Asunto(s)
Citocinesis , Liberación de Radiactividad Peligrosa , Humanos , Relación Dosis-Respuesta en la Radiación , Citocinesis/efectos de la radiación , Pruebas de Micronúcleos/métodos , Bioensayo/métodos , Radiometría/métodos
3.
Artículo en Inglés | MEDLINE | ID: mdl-36868697

RESUMEN

When established, cytokinesis-block micronucleus (CBMN) test reference values should be periodically evaluated according to the recommendations of reference documents. The biodosimetry cytogenetic laboratory of the Serbian Institute of Occupational Health established the CBMN test reference range for people occupationally exposed to ionizing radiation in 2016. Since then, new occupationally exposed persons have been subjected to micronucleus testing, resulting in the need for re-evaluation of existing CBMN test values. The examined population comprised 608 occupationally exposed subjects - 201 from the previous laboratory database and 407 newly examined. Comparison of groups based on gender, age and cigarette consumption did not show significant differences, although certain CBMN values differed significantly between the old and new groups. Duration of occupational exposure, gender, age and smoking habit influenced micronuclei frequency in all three analyzed groups, while no relation was found between type of work and micronucleus test parameters. Since the mean values of all tested parameters in the new group of examinees are within previously established reference ranges, existing values can be used in further research.


Asunto(s)
Citocinesis , Radiación Ionizante , Humanos , Serbia , Valores de Referencia , Pruebas de Micronúcleos
4.
Artículo en Inglés | MEDLINE | ID: mdl-33678245

RESUMEN

Biological dosimetry of ionizing radiation (IR) exposure relies on validated cytogenetic tests measuring the frequencies of micronuclei (MN) and dicentric chromosomes (DC). IR also causes oxidative damage of biomolecules, including DNA. We evaluated IR-induced genotoxic and oxidative damage in a carefully defined cohort of healthy donors, reducing confounding factors as much as possible. Frequencies of MN and DC (peripheral blood lymphocyte cultures) and oxidative stress parameters (plasma) were quantified. We observed dose dependence of both cytogenetic and biochemical endpoints, independent of age, sex, and smoking habits. Oxidative stress parameters, especially oxidative stress index, malondialdehyde, advanced oxidation protein products, and catalase, may be used confidently to assess IR-induced damage, if cytogenetic results are unavailable.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , Linfocitos/metabolismo , Estrés Oxidativo/efectos de la radiación , Plasma/metabolismo , Traumatismos por Radiación/metabolismo , Radiación Ionizante , Adulto , Femenino , Humanos , Linfocitos/patología , Masculino , Persona de Mediana Edad , Traumatismos por Radiación/patología
5.
Artículo en Inglés | MEDLINE | ID: mdl-25308702

RESUMEN

Biological dosimetry using chromosome damage biomarkers is a valuable dose assessment method in cases of radiation overexposure with or without physical dosimetry data. In order to estimate dose by biodosimetry, any biological dosimetry service have to have its own dose response calibration curve. This paper reveals the results obtained after irradiation of blood samples from fourteen healthy male and female volunteers in order to establish biodosimetry in Serbia and produce dose response calibration curves for dicentrics and micronuclei. Taking into account pooled data from all the donors, the resultant fitted curve for dicentrics is: Ydic=0.0009 (±0.0003)+0.0421 (±0.0042)×D+0.0602 (±0.0022)×D(2); and for micronuclei: Ymn=0.0104 (±0.0015)+0.0824 (±0.0050)×D+0.0189 (±0.0017)×D(2). Following establishment of the dose response curve, a validation experiment was carried out with four blood samples. Applied and estimated doses were in good agreement. On this basis, the results reported here give us confidence to apply both calibration curves for future biological dosimetry requirements in Serbia.


Asunto(s)
Radiometría/normas , Rayos X/efectos adversos , Adulto , Calibración , Aberraciones Cromosómicas/efectos de la radiación , Aberraciones Cromosómicas/estadística & datos numéricos , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Masculino , Pruebas de Micronúcleos/normas , Persona de Mediana Edad , Exposición Profesional/análisis , Exposición Profesional/estadística & datos numéricos , Radiografía/efectos adversos , Radiometría/métodos , Serbia/epidemiología
6.
Radiat Prot Dosimetry ; 147(4): 573-92, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21183550

RESUMEN

The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements.


Asunto(s)
Monitoreo de Radiación , Radiación Ionizante , Radiometría/métodos , Carga Corporal (Radioterapia) , Humanos , Dosis de Radiación , Estudios Retrospectivos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...