Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 29(14): 145002, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28067639

RESUMEN

An ordered germanium terminated (1 0 0) diamond surface has been formed and characterised using a combination of low energy electron diffraction and synchrotron-based core level photoemission spectroscopy. A number of preparation methods are explored, in each case inducing a two domain [Formula: see text] surface reconstruction. The surface becomes saturated with bonded germanium such that each [Formula: see text] unit cell hosts 1.26 Ge atoms on average, and possesses a negative electron affinity of -0.71 eV.

2.
Nat Commun ; 6: 6563, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25800494

RESUMEN

Fast and reliable DNA sequencing is a long-standing target in biomedical research. Recent advances in graphene-based electrical sensors have demonstrated their unprecedented sensitivity to adsorbed molecules, which holds great promise for label-free DNA sequencing technology. To date, the proposed sequencing approaches rely on the ability of graphene electric devices to probe molecular-specific interactions with a graphene surface. Here we experimentally demonstrate the use of graphene field-effect transistors (GFETs) as probes of the presence of a layer of individual DNA nucleobases adsorbed on the graphene surface. We show that GFETs are able to measure distinct coverage-dependent conductance signatures upon adsorption of the four different DNA nucleobases; a result that can be attributed to the formation of an interface dipole field. Comparison between experimental GFET results and synchrotron-based material analysis allowed prediction of the ultimate device sensitivity, and assessment of the feasibility of single nucleobase sensing with graphene.


Asunto(s)
Adenina/metabolismo , Citosina/metabolismo , Sondas de ADN , ADN , Grafito/metabolismo , Guanina/metabolismo , Timina/metabolismo , Transistores Electrónicos , Adsorción , Secuencia de Bases , Análisis de Secuencia de ADN
3.
Nanoscale ; 7(4): 1471-8, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25502349

RESUMEN

The electronic structure of physisorbed molecules containing aromatic nitrogen heterocycles (triazine and melamine) on graphene is studied using a combination of electronic transport, X-ray photoemission spectroscopy and density functional theory calculations. The interfacial electronic structure and charge transfer of weakly coupled molecules on graphene is found to be governed by work function differences, molecular dipole moments and polarization effects. We demonstrate that molecular depolarization plays a significant role in these charge transfer mechanisms even at submonolayer coverage, particularly for molecules which possess strong dipoles. Electronic transport measurements show a reduction of graphene conductivity and charge carrier mobility upon the adsorption of the physisorbed molecules. This effect is attributed to the formation of additional electron scattering sites in graphene by the molecules and local molecular electric fields. Our results show that adsorbed molecules containing polar functional groups on graphene exhibit different coverage behaviour to nonpolar molecules. These effects open up a range of new opportunities for recognition of different molecules on graphene-based sensor devices.

4.
Small ; 9(1): 132-9, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23024073

RESUMEN

Control over the quantum states of individual luminescent nitrogen-vacancy (NV) centres in nanodiamonds (NDs) is demonstrated by careful design of the crystal host: its size, surface functional groups, and interfacing substrate. By progressive etching of the ND host, the NV centres are induced to switch from latent, through continuous, to intermittent or "blinking" emission states. The blinking mechanism of the NV centre in NDs is elucidated and a qualitative model proposed to explain this phenomenon in terms of the centre electron(s) tunnelling to acceptor site(s). These measurements suggest that the substrate material and its proximity to the NV are responsible for the fluorescence intermittency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...