Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 249: 112803, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924677

RESUMEN

Creating new tools for the early diagnosis and treatment of cancer is one of the most important and intensively developing areas of modern medicine. Currently, photodynamic cancer therapy (PDT) is attracting increasing attention as a unique modality of minimally invasive treatment and due to the absence of acquired resistance. However, PDT is associated with undesirable activities, such as non-specific photodynamic effects of sunlight on healthy tissues. Therefore, an important fundamental task is the development of improved PDT agents that selectively act on the affected areas. Here, we report the development of a hybrid protein-peptide system for the selective pH-dependent binding and subsequent photodynamic cancer cells ablation. It is known that a distinctive feature of cancer cells is a decreased pH level in the extracellular space. In this study we exploited a peptide fragment (pHLIP) as a targeting module, which spontaneously binds and embeds into the cell membrane when pH decreases below neutral. A mutant of miniSOG protein fused to pHLIP was used as a photosensitizing constituent. We demonstrate that this protein-peptide photosensitizing system selectively binds to HeLa cells at pH below 6.8 and kills them when exposed to light. These findings demonstrate the feasibility of using genetically encoded MiniSOG fusions with pHLIP for the targeted delivery of PSs to cancer cells and subsequent highly precise photodynamic therapy.


Asunto(s)
Dermatitis Fototóxica , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Células HeLa , Línea Celular Tumoral , Dermatitis Fototóxica/tratamiento farmacológico , Péptidos/farmacología , Concentración de Iones de Hidrógeno , Neoplasias/tratamiento farmacológico
2.
Cells ; 12(18)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759538

RESUMEN

Cytochrome c (CytC) is a single-electron carrier between complex bc1 and cytochrome c-oxidase (CcO) in the electron transport chain (ETC). It is also known as a good radical scavenger but its participation in electron flow through the ETC makes it impossible to use CytC as a radical sensor. To solve this problem, a series of mutants were constructed with substitutions of Lys residues in the universal binding site (UBS) which interact electrostatically with negatively charged Asp and Glu residues at the binding sites of CytC partners, bc1 complex and CcO. The aim of this study was to select a mutant that had lost its function as an electron carrier in the ETC, retaining the structure and ability to quench radicals. It was shown that a mutant CytC with substitutions of five (8Mut) and four (5Mut) Lys residues in the UBS was almost inactive toward CcO. However, all mutant proteins kept their antioxidant activity sufficiently with respect to the superoxide radical. Mutations shifted the dipole moment of the CytC molecule due to seriously changed electrostatics on the surface of the protein. In addition, a decrease in the redox potential of the protein as revealed by the redox titrations of 8Mut was detected. Nevertheless, the CD spectrum and dynamic light scattering suggested no significant changes in the secondary structure or aggregation of the molecules of CytC 8Mut. Thus, a variant 8Mut with multiple mutations in the UBS which lost its ability to electron transfer and saved most of its physico-chemical properties can be effectively used as a detector of superoxide generation both in mitochondria and in other systems.


Asunto(s)
Citocromos c , Superóxidos , Citocromos c/genética , Transporte de Electrón , Complejo IV de Transporte de Electrones , Mutación/genética , Caballos , Animales
3.
Biochem Biophys Res Commun ; 641: 57-60, 2023 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-36521286

RESUMEN

It is generally accepted that the use of two different plasmids with the identical origins of replication in bacteria is not desirable due to their "incompatibility". The utilization of the same bacterial enzymatic apparatus for replication of different plasmids is thought to cause a significant redistribution in favor of one of them. In the present work, examining co-expression of two different fluorescent proteins in Escherichia coli, we have shown that the use of highly homologous plasmids with identical origins of replication and providing resistance to different antibiotics results in high representation of both plasmids in bacteria. Meanwhile, the level of gene expression and the amount of proteins produced may differ and is determined mostly by their sequence rather than by the "incompatibility" of the plasmids.


Asunto(s)
Replicación del ADN , Escherichia coli , Replicación del ADN/genética , Secuencia de Bases , Escherichia coli/genética , Plásmidos/genética , Proteínas/genética , Bacterias/genética , ADN Bacteriano/genética
4.
Molecules ; 27(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558192

RESUMEN

Compounds sensitive to reactive oxygen species are widely used in the study of processes in living cells and in the development of therapeutic agents for photodynamic therapy. In the present work, we have synthesized a dyad in which the BODIPY dye is chemically bound to 9,10-diphenylanthracene (DPA). Here, DPA acts as a specific sensor of singlet oxygen and BODIPY as a reference dye. We studied the photophysical properties of the BODIPY-DPA dyad and showed that energy transfer occurs between the chromophores. As a result, the compound has excitation maxima in the absorption region of both DPA and BODIPY, but the fluorescence emission occurs mainly from BODIPY. In the presence of singlet oxygen, the excitation maximum of DPA decreases, while the intensity of the excitation maximum of BODIPY remains almost unchanged. This allows the BODIPY-DPA dyad to be used as a ratiometric sensor of singlet oxygen.


Asunto(s)
Fotoquimioterapia , Oxígeno Singlete , Oxígeno Singlete/química , Compuestos de Boro/química , Transferencia de Energía
5.
Membranes (Basel) ; 12(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36295665

RESUMEN

Carotenoids are potent antioxidants with a wide range of biomedical applications. However, their delivery into human cells is challenging and relatively inefficient. While the use of natural water-soluble carotenoproteins capable to reversibly bind carotenoids and transfer them into membranes is promising, the quantitative estimation of the delivery remains unclear. In the present work, we studied echinenone (ECN) delivery by cyanobacterial carotenoprotein AnaCTDH (C-terminal domain homolog of the Orange Carotenoid Protein from Anabaena), into liposome membranes labelled with BODIPY fluorescent probe. We observed that addition of AnaCTDH-ECN to liposomes led to the significant changes in the fast-kinetic component of the fluorescence decay curve, pointing on the dipole-dipole interactions between the probe and ECN within the membrane. It may serve as an indirect evidence of ECN delivery into membrane. To study the delivery in detail, we carried out molecular dynamics modeling of the localization of ECN within the lipid bilayer and calculate its orientation factor. Next, we exploited FRET to assess concentration of ECN delivered by AnaCTDH. Finally, we used time-resolved fluorescence anisotropy to assess changes in microviscosity of liposomal membranes. Incorporation of liposomes with ß-carotene increased membrane microviscosity while the effect of astaxanthin and its mono- and diester forms was less pronounced. At temperatures below 30 °C addition of AnaCTDH-ECN increased membrane microviscosity in a concentration-dependent manner, supporting the protein-mediated carotenoid delivery mechanism. Combining all data, we propose FRET-based analysis and assessment of membrane microviscosity as potent approaches to characterize the efficiency of carotenoids delivery into membranes.

6.
Biochem Biophys Res Commun ; 612: 141-146, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35525198

RESUMEN

The targeted delivery of nanodrugs to malignant neoplasm is one of the most pressing challenges in the development of modern medicine. It was reported earlier that a bacteriorhodopsin-derived pH low insertion peptide (pHLIP) targets acidic tumors and has the ability to translocate low molecular weight cargoes across the cancer cell membrane. Here, to better understand the potential of pHLIP-related technologies, we used genetically engineered fluorescent protein (EGFP) as a model protein cargo and examined targeting efficiencies of EGFP-pHLIP hybrid constructs in vitro with the HeLa cell line at different pHs. By two independent monitoring methods we observed an increased binding affinity of EGFP-pHLIP fusions to HeLa cells at pH below 6.8. Confocal images of EGFP-pHLIP-treated cells showed bright fluorescence associated with the cell membrane and fluorescent dots localized inside the cell, that became brighter with time. To elucidate the pHLIP-mediated EGFP cell entry mechanisms, we performed a series of experiments with specific inhibitors of endocytosis. Our results imply that EGFP-pHLIP internalization is realized by endocytosis of various types.


Asunto(s)
Bacteriorodopsinas , Neoplasias , Membrana Celular/metabolismo , Fluorescencia , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/metabolismo , Péptidos/química
7.
Biosensors (Basel) ; 11(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34562930

RESUMEN

The determination of pH in live cells and tissues is of high importance in physiology and cell biology. In this report, we outline the process of the creation of SypHerExtra, a genetically encoded fluorescent sensor that is capable of measuring extracellular media pH in a mildly alkaline range. SypHerExtra is a protein created by fusing the previously described pH sensor SypHer3s with the neurexin transmembrane domain that targets its expression to the cytoplasmic membrane. We showed that with excitation at 445 nm, the fluorescence lifetime of both SypHer3s and SypHerExtra strongly depend on pH. Using FLIM microscopy in live eukaryotic cells, we demonstrated that SypHerExtra can be successfully used to determine extracellular pH, while SypHer3s can be applied to measure intracellular pH. Thus, these two sensors are suitable for quantitative measurements using the FLIM method, to determine intracellular and extracellular pH in a range from pH 7.5 to 9.5 in different biological systems.


Asunto(s)
Técnicas Biosensibles , Fluorescencia , Proteínas Fluorescentes Verdes , Humanos , Concentración de Iones de Hidrógeno , Microscopía Fluorescente
8.
J Photochem Photobiol B ; 206: 111853, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32272363

RESUMEN

The precise positioning of catalytic amino acids against the substrate in an enzyme active site is a crucial factor in biocatalysis. Biosynthesis of the chromophores of fluorescent proteins (FPs) is an autocatalytic process that must conform to these requirements. Here, we show that, in addition to the internal amino acid residues in the proximity of the chromophore, chromophore biosynthesis is influenced by the remote amino acids exposed on the outer surface of the ß-barrel structure of the FP. It has been shown earlier that chromophore biosynthesis of the red FP from Zoanthus sp. (zoan2RFP) proceeds via an immature green state. At the same time, the green state is the final stage of chromophore biosynthesis of green FP (zoanGFP), which is highly homologous to zoan2RFP. It was also shown that a single N66D substitution in the chromophore-forming sequence of zoanGFP might trigger the synthesis of the red chromophore. However, in this case, the synthesis of the red chromophore is incomplete and occurs only at elevated temperatures. Here, we tried to uncover additional structural determinants that govern the biosynthesis of the red chromophore. A comparison of zoanGFP and zoan2RFP revealed intrabarrel amino acid differences at five positions. Exhaustive substitutions of these five positions in zoanGFP-N66D gave rise to zoanGFPmut with the same intrabarrel amino acid composition as zoan2RFP. zoanGFPmut showed only partial green-to-red chromophore transformation at elevated temperatures. To elucidate the extra factors that can affect red chromophore biosynthesis, we performed comparative molecular dynamics simulations of zoan2RFP and zoanGFPmut. The simulations revealed several external amino acids that might influence the arrangement and flexibility of the chromophore-surrounding amino acid residues in these proteins. Mutagenesis experiments confirmed the crucial role of these residues in red chromophore biosynthesis. The obtained zoanGFPmut2 exhibited complete green-to-red transformation, suggesting that the mutated amino acids exposed on the surface of the ß-barrel contribute to red chromophore biosynthesis.


Asunto(s)
Aminoácidos/química , Proteínas Luminiscentes/síntesis química , Mutagénesis , Cromatografía de Afinidad , Color , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Simulación de Dinámica Molecular , Espectrofotometría Ultravioleta
9.
Biochim Biophys Acta Gen Subj ; 1862(12): 2924-2939, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30279147

RESUMEN

BACKGROUND: Intracellular pH underlies most cellular processes. There is emerging evidence of a pH-signaling role in plant cells and microorganisms. Dysregulation of pH is associated with human diseases, such as cancer and Alzheimer's disease. SCOPE OF REVIEW: In this review, we attempt to provide a summary of the progress that has been made in the field during the past two decades. First, we present an overview of the current state of the design and applications of fluorescent protein (FP)-based pH indicators. Then, we turn our attention to the development and applications of hybrid pH sensors that combine the capabilities of non-GFP fluorophores with the advantages of genetically encoded tags. Finally, we discuss recent advances in multicolor pH imaging and the applications of genetically encoded pH sensors in multiparameter imaging. MAJOR CONCLUSIONS: Genetically encoded pH sensors have proven to be indispensable noninvasive tools for selective targeting to different cellular locations. Although a variety of genetically encoded pH sensors have been designed and applied at the single cell level, there is still much room for improvements and future developments of novel powerful tools for pH imaging. Among the most pressing challenges in this area is the design of brighter redshifted sensors for tissue research and whole animal experiments. GENERAL SIGNIFICANCE: The design of precise pH measuring instruments is one of the important goals in cell biochemistry and may give rise to the development of new powerful diagnostic tools for various diseases.


Asunto(s)
Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/genética , Concentración de Iones de Hidrógeno , Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia , Humanos , Transducción de Señal
10.
Biochem Biophys Res Commun ; 493(4): 1518-1521, 2017 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-28986251

RESUMEN

Fluorescent protein Dendra2 is a monomeric GFP-like protein that belongs to the group of Kaede-like photoconvertible fluorescent proteins with irreversible photoconversion from a green- to red-emitting state when exposed to violet-blue light. In an acidic environment, photoconverted Dendra2 turns green due to protonation of the phenolic group of the chromophore with pKa of about 7.5. Thus, photoconverted form of Dendra2 can be potentially used as a ratiometric pH-sensor in the physiological pH range. However, incomplete photoconversion makes ratiometric measurements irreproducible when using standard filter sets. Here, we describe the method to detect fluorescence of only photoconverted Dendra2 form, but not nonconverted green Dendra2. We show that the 350 nm excitation light induces solely the fluorescence of photoconverted protein. By measuring the red to green fluorescence ratio, we determined intracellular pH in live CHO and HEK 293 cells. Thus, Dendra2 can be used as a novel ratiometric genetically encoded pH sensor with emission maxima in the green-red spectral region, which is suitable for application in live cells.


Asunto(s)
Técnicas Biosensibles/métodos , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/química , Animales , Células CHO , Cricetulus , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Microscopía Fluorescente , Radiometría/métodos , Espectrometría de Fluorescencia
11.
Biotechniques ; 63(2): 77-80, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28803543

RESUMEN

In nonpolar solvents, hydrophobic organic fluorophores often show bright fluorescence, whereas in polar media, they usually suffer from aggregation-caused quenching (ACQ). Here, we harnessed this solvatochromic behavior of a 1,3,5,7-tetramethyl-BODIPY derivative for cell staining and applied it to live-cell imaging and flow cytometry. As opposed to commercially available dyes, this BODIPY derivative showed excellent contrast immediately after staining and did not require any wash-off.


Asunto(s)
Compuestos de Boro/química , Colorantes Fluorescentes/química , Imagen Óptica/métodos , Supervivencia Celular , Citometría de Flujo/métodos , Células HeLa , Humanos , Metilación , Microscopía Fluorescente/métodos , Coloración y Etiquetado/métodos
12.
Acta Crystallogr D Struct Biol ; 72(Pt 8): 922-32, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27487823

RESUMEN

The fluorescent protein from Dendronephthya sp. (DendFP) is a member of the Kaede-like group of photoconvertible fluorescent proteins with a His62-Tyr63-Gly64 chromophore-forming sequence. Upon irradiation with UV and blue light, the fluorescence of DendFP irreversibly changes from green (506 nm) to red (578 nm). The photoconversion is accompanied by cleavage of the peptide backbone at the C(α)-N bond of His62 and the formation of a terminal carboxamide group at the preceding Leu61. The resulting double C(α)=C(ß) bond in His62 extends the conjugation of the chromophore π system to include imidazole, providing the red fluorescence. Here, the three-dimensional structures of native green and photoconverted red forms of DendFP determined at 1.81 and 2.14 Šresolution, respectively, are reported. This is the first structure of photoconverted red DendFP to be reported to date. The structure-based mutagenesis of DendFP revealed an important role of positions 142 and 193: replacement of the original Ser142 and His193 caused a moderate red shift in the fluorescence and a considerable increase in the photoconversion rate. It was demonstrated that hydrogen bonding of the chromophore to the Gln116 and Ser105 cluster is crucial for variation of the photoconversion rate. The single replacement Gln116Asn disrupts the hydrogen bonding of Gln116 to the chromophore, resulting in a 30-fold decrease in the photoconversion rate, which was partially restored by a further Ser105Asn replacement.


Asunto(s)
Antozoos/química , Proteínas Luminiscentes/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Fluorescencia , Luz , Modelos Moleculares , Conformación Proteica , Alineación de Secuencia , Rayos Ultravioleta
13.
Biochem Biophys Res Commun ; 407(1): 230-5, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21382348

RESUMEN

Fluorescent proteins homologous to green fluorescent protein (avGFP) display pronounced spectral variability due to different chromophore structures and variable chromophore interactions with the surrounding amino acids. To gain insight into the structural basis for yellow emission, the 3D structure of phiYFP (λ(em)=537 nm), a protein from the sea medusa Phialidium sp., was built by a combined homology modeling - mass spectrometry approach. Mass spectrometry of the isolated chromophore-bearing peptide reveals that the chromophore of phiYFP is chemically identical to that of avGFP (λ(em)=508 nm). The experimentally acquired chromophore structure was combined with the homology-based model of phiYFP, and the proposed 3D structure was used as a starting point for identification of the structural features responsible for yellow fluorescence. Mutagenesis of residues in the local chromophore environment of phiYFP suggests that multiple factors cooperate to establish the longest-wavelength emission maximum among fluorescent proteins with an unmodified GFP-like chromophore.


Asunto(s)
Hidrozoos/metabolismo , Proteínas Luminiscentes/química , Secuencia de Aminoácidos , Animales , Fluorescencia , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/aislamiento & purificación , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Espectrometría de Fluorescencia
14.
Chem Biol ; 15(8): 755-64, 2008 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-18721746

RESUMEN

Proteins homologous to green fluorescent protein (GFP) span most of the visible spectrum, offering indispensable tools for live cell imaging. Structural transformations, such as posttranslational autocatalytic and photo-induced modifications, chromophore isomerization, and rearrangements in its environment underlie the unique capacity of these proteins to tune their own optical characteristics. A better understanding of optical self-tuning mechanisms would assist in the engineering of more precisely adapted variants and in expanding the palette of GFP-like proteins to the near-infrared region. The latest advances in this field shed light upon multiple features of protein posttranslational chemistry, and establish some important basic principles about the interplay of structure and spectral properties in the GFP family.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Animales , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Conformación Proteica , Procesamiento Proteico-Postraduccional , Espectrometría de Fluorescencia
15.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 10): 1082-93, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17881826

RESUMEN

The three-dimensional structures of the wild-type red (zRFP574) and green (zGFP506) fluorescent proteins (FP) from the button polyp Zoanthus have been determined at 1.51 and 2.2 A resolution, respectively. In addition, the crystal structures of a zGFP506 variant (zGFP506_N66D) with replacement of the first chromophore-forming residue (Asn66 to Asp) have been determined in the transitional 'green' and mature 'red' states at 2.4 and 2.2 A, respectively. The monomers of these proteins adopt the typical fold of the green fluorescent protein (GFP) family, consisting of an 11-stranded beta-barrel with a chromophore embedded in the middle of an internal alpha-helix directed along the beta-barrel axis. Post-translational modification of the chromophore-forming sequence Asn66-Tyr67-Gly68 within zGFP506 results in a typical GFP-like coplanar two-ring structure consisting of a five-membered imidazolinone heterocycle with the phenolic ring of Tyr67 in a cis orientation to the C(alpha)-N(67) bond. A novel post-translational modification of the chromophore-forming sequence Asp66-Tyr67-Gly68 in zRFP574 expands the protein maturation beyond the green-emitting form and results in decarboxylation of the Asp66 side chain. It is suggested that electrostatic conflict between the closely spaced negatively charged side chains of the chromophore Asp66 and the proximal catalytic Glu221 is most likely to be the trigger for the chain of reactions resulting in the observed decarboxylation. The chromophore structures of wild-type zGFP506 and of its mutant zGFP506_N66D in the 'green' and 'red' states support this suggestion. The beta-barrel frames of zRFP574 and zGFP506 reveal the presence of a water-filled pore leading to the chromophore Tyr67, similar to that observed previously in TurboGFP. An analysis of the residue composition at two inter-monomer interfaces in the tetrameric biological unit of zRFP574 and zGFP506, as well as of zYFP538 from the same species, has revealed a group of highly conserved residues that are apparently responsible for oligomerization. These residues present initial useful targets for rational mutagenesis aimed at designing monomeric forms of the fluorescent proteins, which are more suitable for practical applications.


Asunto(s)
Antozoos/metabolismo , Cristalografía por Rayos X/métodos , Proteínas Fluorescentes Verdes/química , Proteínas Luminiscentes/química , Secuencia de Aminoácidos , Animales , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Plásmidos/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Estereoisomerismo , Proteína Fluorescente Roja
16.
Biochemistry ; 46(41): 11528-35, 2007 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-17892303

RESUMEN

The red fluorescence of a Discosoma coral protein is the result of an additional autocatalytic oxidation of a green fluorescent protein (GFP)-like chromophore. This reaction creates an extra pi-electron conjugation by forming a C=N-C=O substituent. Here we show that the red fluorescence of a protein from Zoanthus sp. 2 (z2FP574) arises from a coupled oxidation-decarboxylation of Asp-66, the first amino acid of the chromophore-precursory DYG sequence. Comparative mutagenesis of highly homologous green (zFP506) and red (z2FP574) fluorescent proteins from Zoanthus species reveals that an aspartate at position 66 is critical for the development of red fluorescence. The maturation kinetics of wild-type z2FP574 and the zFP506 N66D mutant indicates that the "green" GFP-like form is the actual intermediate in producing the red species. Furthermore, via maturation kinetics analysis of zFP506 N66D, combined with mass spectrometry, we determined that the oxidation-decarboxylation of Asp-66 occurs without detectable intermediate products. According to mass spectral data, the minor "red" chromophore of the z2FP574 D66E mutant appears to be oxidized and completely decarboxylation deficient, indicating that the side chain length of acidic amino acid 66 is critical in controlling efficient oxidation-decarboxylation. Substitutions with aspartate at the equivalent positions of a Condylactis gigantea purple chromoprotein and Dendronephthya sp. green fluorescent protein imply that additional oxidation of a GFP-like structure is a prerequisite for chromophore decarboxylation. In summary, these results lead to a mechanism that is related to the chemistry of beta-keto acid decarboxylation.


Asunto(s)
Ácido Aspártico , Proteínas Fluorescentes Verdes/química , Proteínas Luminiscentes/química , Animales , Descarboxilación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Espectrometría de Masas , Modelos Moleculares , Mutagénesis , Oxidación-Reducción , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Anémonas de Mar , Espectrofotometría
18.
Biochemistry ; 45(23): 7256-64, 2006 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-16752914

RESUMEN

Here we present the study of the chromophore structure of the purple chromoprotein from Condylactis gigantea. Tandem mass spectrometry and 1H and 13C NMR of the chromopeptide reveal that the protein contains a chromophore with a chemical structure identical to that of the red fluorescent protein from Discosoma sp. A single A63G substitution demonstrates that the nature of the first amino acid of the XYG chromophore-forming sequence is dispensable for the chromoprotein red shift development. It has been recently proposed that post-translational reactions at the acylimine, a chemical group that accounts for the red fluorescence, might be an additional source of spectral diversity of proteins homologous to the Aequorea victoria green fluorescent protein (GFP). We have examined the reactivity of the chromophore acylimine group within the C. gigantea purple chromoprotein. Like other proteins with the acylimine-modified chromophore, the purple chromoprotein suffers a hypsochromic spectral shift to the GFP-like absorbance (386 nm) upon mild denaturation. NMR analysis of the chromopeptide suggests this hypsochromic spectral shift is due to H2O addition across the C=N bond of the acylimine. However, unlike the red fluorescent protein from Discosoma sp., denatured under harsh conditions, the wild-type chromoprotein exhibits only slight fragmentation, which is induced by complete hydrolysis of the acylimine. A model suggesting the influence of the amino acid X side chain on protein fragmentation is presented.


Asunto(s)
Antozoos/química , Proteínas Fluorescentes Verdes/química , Animales , Electroforesis en Gel de Poliacrilamida , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/aislamiento & purificación , Proteínas Fluorescentes Verdes/metabolismo , Espectrometría de Masas , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Espectrofotometría Ultravioleta
19.
J Biol Chem ; 278(47): 46288-92, 2003 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-12975373

RESUMEN

A number of recently cloned chromoproteins homologous to the green fluorescent protein show a substantial bathochromic shift in absorption spectra. Compared with red fluorescent protein from Discosoma sp. (DsRed), mutants of these so-called far-red proteins exhibit a clear red shift in emission spectra as well. Here we report that a far-red chromoprotein from Goniopora tenuidens (gtCP) contains a chromophore of the same chemical structure as DsRed. Denaturation kinetics of both DsRed and gtCP under acidic conditions indicates that the red form of the chromophore (absorption maximum at 436 nm) converts to the GFP-like form (384 nm) by a one-stage reaction. Upon neutralization, the 436-nm form of gtCP, but not the 384-nm form, renaturates instantly, implying that the former includes a chromophore in its intact state. gtCP represents a single-chain protein and, upon harsh denaturing conditions, shows three major bands in SDS/PAGE, two of which apparently result from hydrolysis of an acylimine C=N bond. Instead of having absorption maxima at 384 nm and 450 nm, which are characteristic for a GFP-like chromophore, fragmented gtCP shows a different spectrum, which presumably corresponds to a 2-keto derivative of imidazolidinone. Mass spectra of the chromophore-containing peptide from gtCP reveal an additional loss of 2 Da relative to the GFP-like chromophore. Tandem mass spectrometry of the chromopeptide shows that an additional bond is dehydrogenated in gtCP at the same position as in DsRed. Altogether, these data suggest that gtCP belongs to the same subfamily as DsRed (in the classification of GFP-like proteins based on the chromophore structure type).


Asunto(s)
Cnidarios/química , Proteínas Luminiscentes/química , Animales , Electroforesis en Gel de Poliacrilamida , Proteínas Fluorescentes Verdes , Espectrometría de Masas , Desnaturalización Proteica , Renaturación de Proteína , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...