Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 124(4): 1794-809, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24569456

RESUMEN

The genes encoding RAS family members are frequently mutated in juvenile myelomonocytic leukemia (JMML) and acute myeloid leukemia (AML). RAS proteins are difficult to target pharmacologically; therefore, targeting the downstream PI3K and RAF/MEK/ERK pathways represents a promising approach to treat RAS-addicted tumors. The p110α isoform of PI3K (encoded by Pik3ca) is an essential effector of oncogenic KRAS in murine lung tumors, but it is unknown whether p110α contributes to leukemia. To specifically examine the role of p110α in murine hematopoiesis and in leukemia, we conditionally deleted p110α in HSCs using the Cre-loxP system. Postnatal deletion of p110α resulted in mild anemia without affecting HSC self-renewal; however, deletion of p110α in mice with KRASG12D-associated JMML markedly delayed their death. Furthermore, the p110α-selective inhibitor BYL719 inhibited growth factor-independent KRASG12D BM colony formation and sensitized cells to a low dose of the MEK inhibitor MEK162. Furthermore, combined inhibition of p110α and MEK effectively reduced proliferation of RAS-mutated AML cell lines and disease in an AML murine xenograft model. Together, our data indicate that RAS-mutated myeloid leukemias are dependent on the PI3K isoform p110α, and combined pharmacologic inhibition of p110α and MEK could be an effective therapeutic strategy for JMML and AML.


Asunto(s)
Genes ras , Hematopoyesis/genética , Hematopoyesis/fisiología , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Leucemia Mielomonocítica Juvenil/enzimología , Leucemia Mielomonocítica Juvenil/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I , Eritropoyesis/genética , Eritropoyesis/fisiología , Xenoinjertos , Humanos , Leucemia Mieloide Aguda/patología , Leucemia Mielomonocítica Juvenil/patología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/deficiencia , Transducción de Señal
2.
Cancer Discov ; 3(8): 922-35, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23689072

RESUMEN

The causes for malignant progression of disseminated tumors and the reasons recurrence rates differ in women with different breast cancer subtypes are unknown. Here, we report novel mechanisms of tumor plasticity that are mandated by microenvironmental factors and show that recurrence rates are not strictly due to cell-intrinsic properties. Specifically, outgrowth of the same population of incipient tumors is accelerated in mice with triple-negative breast cancer (TNBC) relative to those with luminal breast cancer. Systemic signals provided by overt TNBCs cause the formation of a tumor-supportive microenvironment enriched for EGF and insulin-like growth factor-I (IGF-I) at distant indolent tumor sites. Bioavailability of EGF and IGF-I enhances the expression of transcription factors associated with pluripotency, proliferation, and epithelial-mesenchymal transition. Combinatorial therapy with EGF receptor and IGF-I receptor inhibitors prevents malignant progression. These results suggest that plasticity and recurrence rates can be dictated by host systemic factors and offer novel therapeutic potential for patients with TNBC.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Factor de Crecimiento Epidérmico/genética , Transición Epitelial-Mesenquimal , Receptores ErbB/antagonistas & inhibidores , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia , Trasplante de Neoplasias , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Células del Estroma/metabolismo , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Microambiente Tumoral/fisiología
3.
Nat Med ; 16(8): 903-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20616797

RESUMEN

RNA-binding proteins of the Musashi (Msi) family are expressed in stem cell compartments and in aggressive tumors, but they have not yet been widely explored in the blood. Here we demonstrate that Msi2 is the predominant form expressed in hematopoietic stem cells (HSCs), and its knockdown leads to reduced engraftment and depletion of HSCs in vivo. Overexpression of human MSI2 in a mouse model increases HSC cell cycle progression and cooperates with the chronic myeloid leukemia-associated BCR-ABL1 oncoprotein to induce an aggressive leukemia. MSI2 is overexpressed in human myeloid leukemia cell lines, and its depletion leads to decreased proliferation and increased apoptosis. Expression levels in human myeloid leukemia directly correlate with decreased survival in patients with the disease, thereby defining MSI2 expression as a new prognostic marker and as a new target for therapy in acute myeloid leukemia (AML).


Asunto(s)
Transformación Celular Neoplásica/genética , Hematopoyesis/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Proteínas de Unión al ARN/fisiología , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Células Cultivadas , Progresión de la Enfermedad , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/mortalidad , Ratones , Ratones Transgénicos , Modelos Biológicos , Invasividad Neoplásica , Pronóstico , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Regulación hacia Arriba/genética
4.
Cancer Cell ; 17(6): 584-96, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20541703

RESUMEN

We report a Jak2V617F knockin mouse myeloproliferative neoplasm (MPN) model resembling human polycythemia vera (PV). The MPN is serially transplantable and we demonstrate that the hematopoietic stem cell (HSC) compartment has the unique capacity for disease initiation but does not have a significant selective competitive advantage over wild-type HSCs. In contrast, myeloid progenitor populations are expanded and skewed toward the erythroid lineage, but cannot transplant the disease. Treatment with a JAK2 kinase inhibitor ameliorated the MPN phenotype, but did not eliminate the disease-initiating population. These findings provide insights into the consequences of JAK2 activation on HSC differentiation and function and have the potential to inform therapeutic approaches to JAK2V617F-positive MPN.


Asunto(s)
Sustitución de Aminoácidos , Células Madre Hematopoyéticas/patología , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Animales , Antígenos CD/metabolismo , Médula Ósea/patología , Células de la Médula Ósea/efectos de los fármacos , Trasplante de Médula Ósea , Recuento de Células , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/patología , Eritropoyetina/farmacología , Expresión Génica/genética , Perfilación de la Expresión Génica , Hematócrito , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Heterocigoto , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Células Progenitoras de Megacariocitos/metabolismo , Células Progenitoras de Megacariocitos/patología , Células Progenitoras de Megacariocitos y Eritrocitos/efectos de los fármacos , Células Progenitoras de Megacariocitos y Eritrocitos/metabolismo , Células Progenitoras de Megacariocitos y Eritrocitos/patología , Células Progenitoras de Megacariocitos y Eritrocitos/trasplante , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patología , Trastornos Mieloproliferativos/tratamiento farmacológico , Policitemia Vera/genética , Policitemia Vera/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirrolidinas/farmacología , Pirrolidinas/uso terapéutico , Bazo/efectos de los fármacos , Bazo/patología , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Análisis de Supervivencia
5.
Blood ; 115(17): 3489-97, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20197553

RESUMEN

Apc, a negative regulator of the canonical Wnt signaling pathway, is a bona-fide tumor suppressor whose loss of function results in intestinal polyposis. APC is located in a commonly deleted region on human chromosome 5q, associated with myelodysplastic syndrome (MDS), suggesting that haploinsufficiency of APC contributes to the MDS phenotype. Analysis of the hematopoietic system of mice with the Apc(min) allele that results in a premature stop codon and loss of function showed no abnormality in steady state hematopoiesis. Bone marrow derived from Apc(min) mice showed enhanced repopulation potential, indicating a cell intrinsic gain of function in the long-term hematopoietic stem cell (HSC) population. However, Apc(min) bone marrow was unable to repopulate secondary recipients because of loss of the quiescent HSC population. Apc(min) mice developed a MDS/myeloproliferative phenotype. Our data indicate that Wnt activation through haploinsufficiency of Apc causes insidious loss of HSC function that is only evident in serial transplantation strategies. These data provide a cautionary note for HSC-expansion strategies through Wnt pathway activation, provide evidence that cell extrinsic factors can contribute to the development of myeloid disease, and indicate that loss of function of APC may contribute to the phenotype observed in patients with MDS and del(5q).


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon , Médula Ósea/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Síndromes Mielodisplásicos/metabolismo , Alelos , Animales , Secuencia de Bases , Médula Ósea/patología , Cromosomas Humanos Par 5/genética , Cromosomas Humanos Par 5/metabolismo , Codón de Terminación/genética , Células Madre Hematopoyéticas/patología , Humanos , Ratones , Ratones Mutantes , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Fenotipo , Eliminación de Secuencia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
6.
Blood ; 115(7): 1406-15, 2010 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-20008787

RESUMEN

Human cancers, including acute myeloid leukemia (AML), commonly display constitutive phosphoinositide 3-kinase (PI3K) AKT signaling. However, the exact role of AKT activation in leukemia and its effects on hematopoietic stem cells (HSCs) are poorly understood. Several members of the PI3K pathway, phosphatase and tensin homolog (Pten), the forkhead box, subgroup O (FOXO) transcription factors, and TSC1, have demonstrated functions in normal and leukemic stem cells but are rarely mutated in leukemia. We developed an activated allele of AKT1 that models increased signaling in normal and leukemic stem cells. In our murine bone marrow transplantation model using a myristoylated AKT1 (myr-AKT), recipients develop myeloproliferative disease, T-cell lymphoma, or AML. Analysis of the HSCs in myr-AKT mice reveals transient expansion and increased cycling, associated with impaired engraftment. myr-AKT-expressing bone marrow cells are unable to form cobblestones in long-term cocultures. Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR) rescues cobblestone formation in myr-AKT-expressing bone marrow cells and increases the survival of myr-AKT mice. This study demonstrates that enhanced AKT activation is an important mechanism of transformation in AML and that HSCs are highly sensitive to excess AKT/mTOR signaling.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Células de la Médula Ósea/citología , Trasplante de Médula Ósea , División Celular/fisiología , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Riñón/citología , Leucemia Mieloide Aguda/tratamiento farmacológico , Linfoma de Células T/tratamiento farmacológico , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Ratones , Ratones Endogámicos C57BL , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología , Bazo/citología , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...