Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4128, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750015

RESUMEN

Mechanisms of functional cross-talk between global transcriptional repression and efficient DNA damage repair during genotoxic stress are poorly known. In this study, using human AF9 as representative of Super Elongation Complex (SEC) components, we delineate detailed mechanisms of these processes. Mechanistically, we describe that Poly-Serine domain-mediated oligomerization is pre-requisite for AF9 YEATS domain-mediated TFIID interaction-dependent SEC recruitment at the promoter-proximal region for release of paused RNA polymerase II. Interestingly, during genotoxic stress, CaMKII-mediated phosphorylation-dependent nuclear export of AF9-specific deacetylase HDAC5 enhances concomitant PCAF-mediated acetylation of K339 residue. This causes monomerization of AF9 and reduces TFIID interaction for transcriptional downregulation. Furthermore, the K339 acetylation-dependent enhanced AF9-DNA-PKc interaction leads to phosphorylation at S395 residue which reduces AF9-SEC interaction resulting in transcriptional downregulation and efficient repair of DNA damage. After repair, nuclear re-entry of HDAC5 reduces AF9 acetylation and restores its TFIID and SEC interaction to restart transcription.


Asunto(s)
Daño del ADN , Reparación del ADN , Histona Desacetilasas , Procesamiento Proteico-Postraduccional , Transcripción Genética , Humanos , Acetilación , Fosforilación , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , ARN Polimerasa II/metabolismo , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/química , Multimerización de Proteína , Células HEK293 , Células HeLa , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/química
2.
Mol Cell ; 84(6): 1149-1157.e7, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38309274

RESUMEN

OCA-B, OCA-T1, and OCA-T2 belong to a family of coactivators that bind to POU transcription factors (TFs) to regulate gene expression in immune cells. Here, we identify IκBζ (encoded by the NFKBIZ gene) as an additional coactivator of POU TFs. Although originally discovered as an inducible regulator of NF-κB, we show here that IκBζ shares a microhomology with OCA proteins and uses this segment to bind to POU TFs and octamer-motif-containing DNA. Our functional experiments suggest that IκBζ requires its interaction with POU TFs to coactivate immune-related genes. This finding is reinforced by epigenomic analysis of MYD88L265P-mutant lymphoma cells, which revealed colocalization of IκBζ with the POU TF OCT2 and NF-κB:p50 at hundreds of DNA elements harboring octamer and κB motifs. These results suggest that IκBζ is a transcriptional coactivator that can amplify and integrate the output of NF-κB and POU TFs at inducible genes in immune cells.


Asunto(s)
ADN , FN-kappa B , FN-kappa B/genética , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , ADN/genética , ADN/metabolismo
3.
Gene ; 878: 147571, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37331491

RESUMEN

The pausing of RNA polymerase II (Pol II) at the promoter-proximal sites is a key rate-limiting step in gene expression. Cells have dedicated a specific set of proteins that sequentially establish pause and then release the Pol II from promoter-proximal sites. A well-controlled pausing and subsequent release of Pol II is crucial for the fine tuning of expression of genes including signal-responsive and developmentally-regulated ones. The release of paused Pol II broadly involves its transition from initiation to elongation. In this review article, we will discuss the phenomenon of Pol II pausing, the underlying mechanism, and also the role of different known factors, with an emphasis on general transcription factors, involved in this overall regulation. We will further discuss some recent findings suggesting a possible role (underexplored) of initiation factors in assisting the transition of transcriptionally-engaged paused Pol II into productive elongation.


Asunto(s)
Factores Generales de Transcripción , Factores Generales de Transcripción/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética
4.
Nucleic Acids Res ; 50(19): 10995-11012, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36305813

RESUMEN

Mammalian cells immediately inhibit transcription upon exposure to genotoxic stress to avoid fatal collision between ongoing transcription and newly recruited DNA repair machineries to protect genomic integrity. However, mechanisms of this early transcriptional inhibition are poorly understood. In this study, we decipher a novel role of human EAF1, a positive regulator of ELL-dependent RNA Polymerase II-mediated transcription in vitro, in regulation of temporal inhibition of transcription during genotoxic stress. Our results show that, besides Super Elongation Complex (SEC) and Little Elongation Complex (LEC), human ELL (aka ELL1) also forms a complex with EAF1 alone. Interestingly, contrary to the in vitro studies, EAF1 inhibits ELL-dependent RNA polymerase II-mediated transcription of diverse target genes. Mechanistically, we show that intrinsic self-association property of ELL leads to its reduced interaction with other SEC components. EAF1 enhances ELL self-association and thus reduces its interaction with other SEC components leading to transcriptional inhibition. Physiologically, we show that upon exposure to genotoxic stress, ATM-mediated ELL phosphorylation-dependent enhanced EAF1 association results in reduced ELL interaction with other SEC components that lead to global transcriptional inhibition. Thus, we describe an important mechanism of dynamic transcriptional regulation during genotoxic stress involving post-translational modification of a key elongation factor.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Factores de Transcripción , Factores de Elongación Transcripcional , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Daño del ADN , Fosforilación , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Procesamiento Proteico-Postraduccional
5.
Mol Cell Biol ; 42(10): e0015122, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36036574

RESUMEN

Although ELL-associated factors 1 and 2 (EAF1/2) have been shown to enhance RNA polymerase II-mediated transcription in vitro, their functional roles in vivo are poorly known. In this report, we show functions of these proteins in regulating ELL stability through their competitive binding with HDAC3 at the N terminus of ELL. Reduced HDAC3 binding to ELL causes increased acetylation leading to reduced ubiquitylation-mediated degradation. Similar functional roles played by DBC1 in regulating ELL stability further prompted in-depth analyses that demonstrated presence of negative feedback loop mechanisms between DBC1 and EAF1/2 in maintaining overall ELL level. Mechanistically, increased DBC1 reduces EAF1/2 level through increased ubiquitylation involving E3 ubiquitin ligase TRIM28, whereas increased EAF1/2 reduces DBC1 level through reduced transcription. Physiologically, after a few passages, ELL levels in either DBC1 or EAF1 knockdown cells are restored through enhanced expression of EAF1 and DBC1, respectively. Interestingly, for maintenance of ELL level, mammalian cells prefer the EAF1-dependent pathway during exposure to genotoxic stress, and the DBC1-dependent pathway during exposure to growth factors. Thus, we describe coordinated functions of multiple factors, including EAF1/2, HDAC3, DBC1, and TRIM28 in regulating ELL protein level for optimal target gene expression in a context-dependent manner within mammalian cells.


Asunto(s)
ARN Polimerasa II , Factores de Elongación Transcripcional , Animales , Factores de Elongación Transcripcional/metabolismo , Retroalimentación , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...