Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
Endocr Pathol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958823

RESUMEN

Medullary thyroid carcinoma (MTC) is a rare cancer derived from neuroendocrine C-cells of the thyroid. In contrast to other neuroendocrine tumors, a histological grading system was lacking until recently. A novel two-tier grading system based on the presence of high proliferation or necrosis is associated with prognosis. Transcriptomic analysis was conducted on 21 MTCs, including 9 high-grade tumors, with known mutational status, using the NanoString Tumor Signaling 360 Panel. This analysis, covering 760 genes, revealed upregulation of the genes EGLN3, EXO1, UBE2T, UBE2C, FOXM1, CENPA, DLL3, CCNA2, SOX2, KIF23, and CDCA5 in high-grade MTCs. Major pathways differentially expressed between high-grade and low-grade MTCs were DNA damage repair, p53 signaling, cell cycle, apoptosis, and Myc signaling. Validation through qRT-PCR in 30 MTCs demonstrated upregulation of ASCL1, DLL3, and SOX2 in high-grade MTCs, a gene signature akin to small-cell lung carcinoma, molecular subgroup A. Subsequently, DLL3 expression was validated by immunohistochemistry. MTCs with DLL3 overexpression (defined as ≥ 50% of positive tumor cells) were associated with significantly lower disease-free survival (p = 0.041) and overall survival (p = 0.01). Moreover, MTCs with desmoplasia had a significantly increased expression of DLL3. Our data supports the idea that DLL3 should be further explored as a predictor of aggressive disease and poor outcomes in MTC.

2.
Food Chem ; 455: 139743, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38823135

RESUMEN

Plant proteins are increasingly being used in the food industry due to their sustainability. They can be isolated from food industry waste and converted into value-added ingredients, promoting a more circular economy. In this study, ultrasound-assisted alkaline extraction (UAAE) was optimized to maximize the extraction yield and purity of protein ingredients from grapeseeds. Grapeseed protein was extracted using UAAE under different pH (9-11), temperature (20-50 °C), sonication time (15-45 min), and solid/solvent ratio (10-20 mL/g) conditions. The structural and functional attributes of grapeseed protein and its major fractions (albumins and glutelins) were investigated and compared. The albumin fractions had higher solubilities, emulsifying properties, and in vitro digestibilities but lower fluid binding capacities and thermal stability than the UAAE and glutelin fraction. These findings have the potential to boost our understanding of the structural and functional characteristics of grapeseed proteins, thereby increasing their potential applications in the food and other industries.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38888215

RESUMEN

Since its coinage ca. 1850 AD by Philip Barker Webb, the biogeographical region of Macaronesia, consisting of the North Atlantic volcanic archipelagos of the Azores, Madeira with the tiny Selvagens, the Canaries and Cabo Verde, and for some authors different continental coastal strips, has been under dispute. Herein, after a brief introduction on the terminology and purpose of regionalism, we recover the origins of the Macaronesia name, concept and geographical adscription, as well as its biogeographical implications and how different authors have positioned themselves, using distinct terrestrial or marine floristic and/or faunistic taxa distributions and relationships for accepting or rejecting the existence of this biogeographical region. Four main issues related to Macaronesia are thoroughly discussed: (i) its independence from the Mediterranean phytogeographical region; (ii) discrepancies according to different taxa analysed; (iii) its geographical limits and the role of the continental enclave(s), and, (iv) the validity of the phytogeographical region level. We conclude that Macaronesia has its own identity and a sound phytogeographical foundation, and that this is mainly based on three different floristic components that are shared by the Macaronesian core (Madeira and the Canaries) and the outermost archipelagos (Azores and Cabo Verde). These floristic components are: (i) the Palaeotropical-Tethyan Geoflora, formerly much more widely distributed in Europe and North Africa and currently restricted to the three northern archipelagos (the Azores, Madeira and the Canaries); (ii) the African Rand Flora, still extant in the coastal margins of Africa and Arabia, and present in the southern archipelagos (Madeira, the Canaries and Cabo Verde), and (iii) the Macaronesian neoendemic floristic component, represented in all the archipelagos, a result of allopatric diversification promoted by isolation of Mediterranean ancestors that manage to colonize Central Macaronesia and, from there, the outer archipelagos. Finally, a differentiating floristic component recently colonized the different archipelagos from the nearest continental coast, providing them with different biogeographic flavours.

4.
Clin Transl Oncol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869741

RESUMEN

This revised consensus statement of the Spanish Society of Medical Oncology (SEOM) and the Spanish Society of Pathological Anatomy (SEAP) updates the recommendations for biomarkers use in the diagnosis and treatment of breast cancer that we first published in 2018. The expert group recommends determining in early breast cancer the estrogen receptor (ER), progesterone receptor (PR), Ki-67, and Human Epidermal growth factor Receptor 2 (HER2), as well as BReast CAncer (BRCA) genes in high-risk HER2-negative breast cancer, to assist prognosis and help in indicating the therapeutic options, including hormone therapy, chemotherapy, anti-HER2 therapy, and other targeted therapies. One of the four available genetic prognostic platforms (Oncotype DX®, MammaPrint®, Prosigna®, or EndoPredict®) may be used in ER-positive patients with early breast cancer to establish a prognostic category and help decide with the patient whether adjuvant treatment may be limited to hormonal therapy. In second-line advanced breast cancer, in addition, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and estrogen receptor 1 (ESR1) should be tested in hormone-sensitive cases, BRCA gene mutations in HER2-negative cancers, and in triple-negative breast cancer (TNBC), programmed cell death-1 ligand (PD-L1). Newer biomarkers and technologies, including tumor-infiltrating lymphocytes (TILs), homologous recombination deficiency (HRD) testing, serine/threonine kinase (AKT) pathway activation, and next-generation sequencing (NGS), are at this point investigational.

5.
Virchows Arch ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713384

RESUMEN

The proposed role of CDH1 (E-cadherin gene) methylation as a mechanism of gene inactivation in invasive lobular carcinoma (ILC) remains inconclusive. For many years, CDH1 promoter hypermethylation has been regarded as a mechanism for gene inactivation in ILC. However, this assumption has primarily relied on non-quantitative assays, which have reported CDH1 methylation frequencies ranging from 26 to 93% at CpG sites within the island region. Few studies employing quantitative methods and covering CpG island shores, regions of relatively low CpG density situated proximal to conventional promoter CpGs, have been conducted, revealing lower percentages of methylation ranging from 0 to 51%. Therefore, using the quantitative pyrosequencing method, we examined CDH1 methylation in the island region and shores in E-cadherin deficient ILC cases (15 with CDH1 mutation and 22 non-mutated), 19 cases of invasive breast carcinomas non-special type (IBC-NSTs), and five cases of usual ductal hyperplasia (UDH). Our analysis revealed CDH1 methylation frequencies ranging from 3 to 64%, with no significant increase in methylation levels in any group of ILCs (median = 12%) compared to IBC-NST (median = 15%). In addition, considering the poorly studied association between the number of tumor-infiltrating lymphocytes (TILs) and CDH1 methylation in breast cancer, we undertook a thorough analysis within our dataset. Our findings revealed a positive correlation between CDH1 methylation and the presence of TILs (r = 0.5; p-value < 0.05), shedding light on an aspect of breast cancer biology warranting further investigation. These findings challenge CDH1 methylation as a CDH1 inactivation mechanism in ILC and highlight TILs as a potential confounding factor in gene methylation.

6.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279292

RESUMEN

Respiratory diseases in ruminants are a main cause of economic losses to farmers worldwide. Approximately 25% of ruminants experience at least one episode of respiratory disease during the first year of life. Mannheimia haemolytica is the main etiological bacterial agent in the ruminant respiratory disease complex. M. haemolytica can secrete several virulence factors, such as leukotoxin, lipopolysaccharide, and proteases, that can be targeted to treat infections. At present, little information has been reported on the secretion of M. haemolytica A2 proteases and their host protein targets. Here, we obtained evidence that M. haemolytica A2 proteases promote the degradation of hemoglobin, holo-lactoferrin, albumin, and fibrinogen. Additionally, we performed biochemical characterization for a specific 110 kDa Zn-dependent metalloprotease (110-Mh metalloprotease). This metalloprotease was purified through ion exchange chromatography and characterized using denaturing and chaotropic agents and through zymography assays. Furthermore, mass spectrometry identification and 3D modeling were performed. Then, antibodies against the 110 kDa-Mh metalloprotease were produced, which achieved great inhibition of proteolytic activity. Finally, the antibodies were used to perform immunohistochemical tests on postmortem lung samples from sheep with suggestive histology data of pneumonic mannheimiosis. Taken together, our results strongly suggest that the 110-Mh metalloprotease participates as a virulence mechanism that promotes damage to host tissues.


Asunto(s)
Mannheimia haemolytica , Pasteurelosis Neumónica , Enfermedades de las Ovejas , Bovinos , Ovinos , Animales , Pasteurelosis Neumónica/diagnóstico , Pasteurelosis Neumónica/microbiología , Metaloproteasas/metabolismo , Péptido Hidrolasas/metabolismo , Rumiantes , Colagenasas/metabolismo , Zinc/metabolismo , Enfermedades de las Ovejas/microbiología
7.
Aquat Toxicol ; 267: 106828, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176168

RESUMEN

This paper investigates the effects of the fungicide azoxystrobin, a compound widely used in rice farming, on aquatic communities representative of two habitats characteristic of Mediterranean wetland ecosystems: water springs and eutrophic lake waters. The long-term effects of azoxystrobin were evaluated on several structural (phytoplankton, zooplankton, macroinvertebrate populations and communities) and functional (microbial decomposition, macrophyte and periphyton growth) parameters making use of freshwater mesocosms. Azoxystrobin was applied in two pulses of 2, 20, 200 µg/L separated by 14 d using the commercial product ORTIVA (23 % azoxystrobin w/w). The results show that these two habitats responded differently to the fungicide application due to their distinct physico-chemical, functional, and structural characteristics. Although overall sensitivity was found to be similar between the two (lowest NOEC < 2 µg/L), the taxa and processes that were affected differed substantially. In general, the most sensitive species to the fungicide were found in the water spring mesocosms, with some species of phytoplankton (Nitzschia sp.) or macrocrustaceans (Echinogammarus sp. and Dugastella valentina) being significantly affected at 2 µg/L. In the eutrophic lake mesocosms, effects were found on phytoplankton taxa (Desmodesmus sp. and Coelastrum sp.), on numerous zooplankton taxa, on chironomids and on the beetle Colymbetes fuscus, although at higher concentrations. The hemipteran Micronecta scholtzi was affected in both treatments. In addition, functional parameters such as organic matter decomposition or macrophyte growth were also affected at relatively low concentrations (NOEC 2 µg/L). Structural Equation Modelling was used to shed light on the indirect effects caused by azoxystrobin on the ecosystem. These results show that azoxystrobin is likely to pose structural and functional effects on Mediterranean wetland ecosystems at environmentally relevant concentrations. Moreover, it highlights the need to consider habitat-specific features when conducting ecotoxicological research at the population and community levels.


Asunto(s)
Fungicidas Industriales , Pirimidinas , Estrobilurinas , Contaminantes Químicos del Agua , Animales , Ecosistema , Fungicidas Industriales/toxicidad , Humedales , Contaminantes Químicos del Agua/toxicidad , Fitoplancton , Zooplancton , Lagos , Agua/farmacología
9.
Neurourol Urodyn ; 43(1): 246-257, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37901953

RESUMEN

OBJECTIVE: To assess the effect of an injection of botulinum toxin A (BoNT/A) at the epicenter of the spinal cord injury (SCI) site on the recovery of lower urinary tract function in female rats with thoracic SCI. MATERIALS AND METHODS: Twenty-four female Wistar rats with Sham (laminectomy at T8/T9 level) or SCI (at T8/T9; 30 g compression for 5 s) were assigned into Sham-SS (injected with 5 µL of saline solution), Sham-BoNT/A (injected with 15 pg/rat, equivalent to 7.5 Units/kg of BoNT/A in 5 µL volume), SCI-SS (injured and injected with saline), SCI-BoNT/A (injured and injected with BoNT/A), N = 6 per group. Weekly evaluation of stereotyped micturition behavior, hind-limb nociception, and locomotor activity was performed 1 week before and during 6 weeks after surgery. Subsequently, all groups underwent simultaneous electromyography of the external urethral sphincter (EUS-EMG) and cystometric (CMG) studies. RESULTS: A compression SCI at the T8/T9 thoracic level significantly impairs sensory and locomotive functions, as well as stereotyped micturition behavior. However, these impairments were improved by BoNT/A injection after SCI. Neither injections of saline solution nor BoNT/A had an appreciable effect on the same parameters evaluated in the Sham groups. The combined EUS-EMG and CMG evaluations revealed important improvements of lower urinary tract physiology, particularly a reduction in the frequency of non-voiding contractions and the properties of EUS bursting activity indicated as the amplitude of the EUS-EMG signal and duration of burst electrical activity during effective voiding. CONCLUSION: The severe impairments on sensory and locomotive functions as well stereotyped micturition caused by an SCI could be potentially attenuated by an injection of a small amount of BoNT/A directly into the epicenter of the SCI region. A reduction in the release of neurotoxic neurotransmitters requiring the SNARE complex may be the mechanism triggered by BoNT/A to reduce neurotoxicity and hyperexcitability created in the SCI area to improve the survival of spinal cord cells involved in micturition.


Asunto(s)
Toxinas Botulínicas Tipo A , Traumatismos de la Médula Espinal , Ratas , Femenino , Animales , Toxinas Botulínicas Tipo A/farmacología , Solución Salina/farmacología , Ratas Wistar , Vejiga Urinaria , Micción , Traumatismos de la Médula Espinal/complicaciones
11.
Int J Biol Macromol ; 256(Pt 1): 128273, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000584

RESUMEN

Olive leaf, as an important by-product of olive farming, is generated from the pruning and harvesting of olive trees and represents >10 % of the total olive weight. The present study was conducted to evaluate the composition, functional and structural characterizations, as well as the in vitro digestibility of olive leaf proteins isolated from ultrasonic-assisted extraction, comparing to classical and industrial techniques. The ultrasound-assisted extraction of olive leaf protein was optimized by the simultaneous maximization of the yield and purity of protein using a Box-Behnken design (BBD) of response surface methodology (RSM). The results indicated that the optimal extraction conditions were as follows: pH of 10.99, temperature of 40.48 °C, sonication time of 47.25 min, and solvent/solid ratio of 24.08 mL/g. Under these conditions, the extraction yield and protein content were 11.67 and 51.2 %, respectively, which were significantly higher than those obtained by the conventional techniques. Regarding the functionality of protein, extraction technique had significant impacts on the structural and functional properties of proteins. In general, ultrasound assisted extraction had higher solubility, and better foaming and thermal properties and in vitro digestibility but lower emulsifying stability and fluid binding capacity compared to conventional ones. Ultrasound-assisted alkaline extraction has great potential to produce edible olive leaf protein with modified functional properties that can be used for various aims in the food applications.


Asunto(s)
Olea , Olea/química , Solventes/química , Temperatura , Hojas de la Planta/química
12.
J Fungi (Basel) ; 9(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37888266

RESUMEN

Penicillium rubens is a filamentous fungus of great biotechnological importance due to its role as an industrial producer of the antibiotic penicillin. However, despite its significance, our understanding of the regulatory mechanisms governing biological processes in this fungus is still limited. In fungi, zinc finger proteins containing a Zn(II)2Cys6 domain are particularly interesting regulators. Although the P. rubens genome harbors many genes encoding proteins with this domain, only two of them have been investigated thus far. In this study, we employed CRISPR-Cas9 technology to disrupt the pcz1 gene, which encodes a Zn(II)2Cys6 protein in P. rubens. The disruption of pcz1 resulted in a decrease in the production of penicillin in P. rubens. This decrease in penicillin production was accompanied by the downregulation of the expression of pcbAB, pcbC and penDE genes, which form the biosynthetic gene cluster responsible for penicillin production. Moreover, the disruption of pcz1 also impacts on asexual development, leading to decreased growth and conidiation, as well as enhanced conidial germination. Collectively, our results indicate that pcz1 acts as a positive regulator of penicillin production, growth, and conidiation, while functioning as a negative regulator of conidial germination in P. rubens. To the best of our knowledge, this is the first report involving a gene encoding a Zn(II)2Cys6 protein in the regulation of penicillin biosynthesis in P. rubens.

13.
Bioorg Med Chem ; 95: 117490, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37862936

RESUMEN

Thirty-nine aryl azoles, thirteen triazoles and twenty-seven tetrazoles, have been synthetized and biologically evaluated to determine their activity as tumor microenvironment disruptors. Antiproliferative studies have been performed on tumor cell lines HT-29, A-549 and MCF-7 and on non-tumor cell line HEK-293. It has been studied in HT-29 the expression levels of biological targets which are involved in tumor microenvironment processes, such as PD-L1, CD-47, c-Myc and VEGFR-2. In addition, antiproliferative activity was evaluated when HT-29 were co-cultured with THP-1 monocytes and the secretion levels of IL-6 were also determined in these co-cultures. The angiogenesis effect of some selected compounds on HMEC-1 was also evaluated as well as their action against vasculogenic mimicry on HEK-293. Compounds bearing an amino group in the phenyl ring and a halogen atom in the benzyl ring showed promising results as tumor microenvironment disrupting agents. The most outstanding compound decrease dramatically the population of HT-29 cells when co-cultured with THP-1 monocytes and the levels of IL-6 secreted, as well as it showed moderate effects over PD-L1, CD-47 and c-Myc.


Asunto(s)
Azoles , Antígeno B7-H1 , Humanos , Microambiente Tumoral , Células HEK293 , Interleucina-6 , Línea Celular Tumoral
14.
Front Plant Sci ; 14: 1246945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799553

RESUMEN

Agronomic biofortification of crops is a promising approach that can improve the nutritional value of staple foods by alleviating dietary micronutrient deficiencies. Iodine deficiency is prevalent in many countries, including Australia, but it is not clear what foliar application strategies will be effective for iodine fortification of grain. This study hypothesised that combining adjuvants with iodine in foliar sprays would improve iodine penetration in wheat, leading to more efficient biofortification of grains. The glasshouse experiment included a total of nine treatments, including three reference controls: 1) Water; 2) potassium iodate (KIO3) and 3) potassium chloride (KCl); and a series of six different non-ionic surfactant or oil-based adjuvants: 4) KIO3 + BS1000; 5) KIO3 + Pulse® Penetrant; 6) KIO3 + Uptake®; 7) KIO3 + Hot-Up®; 8) KIO3 + Hasten® and 9) KIO3 + Synerterol® Horti Oil. Wheat was treated at heading, and again during the early milk growth stage. Adding the organosilicon-based adjuvant (Pulse®) to the spray formulation resulted in a significant increase in grain loading of iodine to 1269 µg/kg compared to the non-adjuvant KIO3 control at 231µg/kg, and the water and KCl controls (both 51µg/kg). The second most effective adjuvant was Synerterol® Horti Oil, which increased grain iodine significantly to 450µg/kg. The Uptake®, BS1000, Hasten®, and Hot-Up® adjuvants did not affect grain iodine concentrations relative to the KIO3 control. Importantly, iodine application and the subsequent increase in grain iodine had no significant effects on biomass production and grain yield relative to the controls. These results indicate that adjuvants can play an important role in agronomic biofortification practices, and organosilicon-based products have a great potential to enhance foliar penetration resulting in a higher translocation rate of foliar-applied iodine to grains, which is required to increase the iodine density of staple grains effectively.

15.
Front Plant Sci ; 14: 1247600, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854115

RESUMEN

Agronomic biofortification of wheat grain with zinc can improve the condition of about one billion people suffering from zinc (Zn) deficiency. However, with the challenge of cultivating high-yielding wheat varieties in Zn-deficient soils and the global need to produce higher-quality food that nourishes the growing population, innovation in the strategies to deliver Zn directly to plants will come into play. Consequently, existing foliar formulations will need further refinement to maintain the high agronomic productivity required in competitive global grain markets while meeting the dietary Zn intake levels recommended for humans. A new generation of foliar fertilisers that increase the amount of Zn assimilated in wheat plants and the translocation efficiency of Zn from leaves to grains can be a promising solution. Research on the efficacy of adjuvants and emerging nano-transporters relative to conventional Zn forms applied as foliar fertilisers to wheat has expanded rapidly in recent years. This review scopes the range of evidence available in the literature regarding the biofortification of bread wheat (Triticum aestivum L.) resulting from foliar applications of conventional Zn forms, Zn nanoparticles and novel Zn-foliar formulations. We examine the foliar application strategies and the attained final concentration of grain Zn. We propose a conceptual model for the response of grain Zn biofortification of wheat to foliar Zn application rates. This review discusses some physiological aspects of transportation of foliarly applied Zn that need further investigation. Finally, we explore the prospects of engineering foliar nano-formulations that could effectively overcome the physicochemical barrier to delivering Zn to wheat grains.

16.
Rev. neuro-psiquiatr. (Impr.) ; 86(4): 323-328, oct.-dic. 2023. graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1560336

RESUMEN

RESUMEN El dolor lumbar discogénico es una entidad cuyo manejo médico inicial se da con terapia física, con un alto porcentaje de pacientes que experimentan disminución de sus molestias; sin embargo, a aquellos que muestran persistencia de síntomas se les indica cirugía. Tradicionalmente, se opta por la cirugía abierta o microdiscectomía para el manejo de hernia del núcleo pulposo; sin embargo, actualmente, la discectomía mediante endoscopía es una técnica con múltiples ventajas. En la presente revisión de la discectomía endoscópica de tercera generación, se describen sus indicaciones, una breve historia de la endoscopía espinal a nivel internacional y nacional, así como la técnica propiamente como tal, además de un caso conducido en nuestra institución.


ABSTRACT Discogenic low back pain is a condition whose typical initial medical management is that of physical therapy. A significant percentage of patients experience a reduction of their discomfort, but for those with persistent symptoms, surgery is recommended. Traditionally, open surgery or microdiscectomy has been the preferred choice for the treatment of herniated discs. Nevertheless, endoscopic discectomy is a technique with several advantages; in this review of third-generation endoscopic discectomy, its indications, a brief history of international and national spinal endoscopy, the technique and its application in our context are described, and a case handled in our institution is presented.

17.
Cancers (Basel) ; 15(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37509327

RESUMEN

Malignant melanoma (MM) can spread to other organs and is resistant in part due to the presence of cancer stem cell subpopulations (CSCs). While a controversial high dose of interferon-alpha (IFN-α) has been used to treat non-metastatic high-risk melanoma, it comes with undesirable side effects. In this study, we evaluated the effect of low and high doses of IFN-α on CSCs by analyzing ALDH activity, side population and specific surface markers in established and patient-derived primary cell lines. We also assessed the clonogenicity, migration and tumor initiation capacities of IFN-α treated CSCs. Additionally, we investigated genomic modulations related to stemness properties using microRNA sequencing and microarrays. The effect of IFN-α on CSCs-derived exosomes was also analyzed using NanoSight and liquid chromatography (LC-HRMS)-based metabolomic analysis, among others. Our results showed that even low doses of IFN-α reduced CSC formation and stemness properties, and led to a significant decrease in the ability to form tumors in mice xenotransplants. IFN-α also modulated the expression of genes and microRNAs involved in several cancer processes and metabolomics of released exosomes. Our work suggests the utility of low doses of interferon, combined with the analysis of metabolic biomarkers, as a potential clinical approach against the aggressiveness of CSCs in melanoma.

18.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446361

RESUMEN

Early stages are under-represented in studies on the molecular and immune features of high-grade serous ovarian carcinoma (HGSOC), and specific studies focused on early-stage HGSOC are required for a better prognostic stratification and to personalize chemotherapy. The aim of this study was to determine the prognostic significance of CD8+ and CD4+ tumor-infiltrating lymphocytes (TILs), tumoral cell PD-L1 expression, BRCA mutational status and tumor mutation burden (TMB) in early-stage HGSOC. A retrospective study was performed on stage I and II HGSOC from the Molecular Reclassification of Early Stages of Ovarian Cancer (RECLAMO) cohort from the Spanish Group of Ovarian Cancer Research (GEICO). Centralized histological typing was performed based on morphological and immunohistochemical features. Intraepithelial (i) and stromal (s) CD8+ and CD4+ T cells and PD-L1 were evaluated on tissue microarrays by immunohistochemistry. BRCA1 and BRCA2 mutation status and TMB were analyzed in tumor DNA using next-generation sequencing. The study included 124 tumors. High iCD8+ (>20 TILs/core), low/intermediate CD4+ (<20 TILs/core) and high CD8+/CD4+ ratio (>35/core) were associated with favorable outcomes. Tumor cell PD-L1 expression (TPS ≥ 1) was present in only 8% of tumors. In total, 11 (16%) and 6 (9%) out of 69 HGSOC tested carried pathogenic or likely pathogenic BRCA1 or BRCA2 mutations, respectively. Median TMB of 40 tumors analyzed was 5.04 mutations/Mb and only 6 tumors had 10 or more mutations/Mb. BRCA status and TMB were not associated with TILs or prognosis. When compared with studies on advanced HGSOC, our results suggested that prognostic variables differed according to stage and that more studies focused on early stages of HGSOC are needed to better stratify these tumors.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Neoplasias Ováricas , Humanos , Femenino , Pronóstico , Estudios Retrospectivos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Ováricas/patología , Mutación
19.
Nature ; 619(7970): 545-550, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438518

RESUMEN

Oceanic island floras are well known for their morphological peculiarities and exhibit striking examples of trait evolution1-3. These morphological shifts are commonly attributed to insularity and are thought to be shaped by the biogeographical processes and evolutionary histories of oceanic islands2,4. However, the mechanisms through which biogeography and evolution have shaped the distribution and diversity of plant functional traits remain unclear5. Here we describe the functional trait space of the native flora of an oceanic island (Tenerife, Canary Islands, Spain) using extensive field and laboratory measurements, and relate it to global trade-offs in ecological strategies. We find that the island trait space exhibits a remarkable functional richness but that most plants are concentrated around a functional hotspot dominated by shrubs with a conservative life-history strategy. By dividing the island flora into species groups associated with distinct biogeographical distributions and diversification histories, our results also suggest that colonization via long-distance dispersal and the interplay between inter-island dispersal and archipelago-level speciation processes drive functional divergence and trait space expansion. Contrary to our expectations, speciation via cladogenesis has led to functional convergence, and therefore only contributes marginally to functional diversity by densely packing trait space around shrubs. By combining biogeography, ecology and evolution, our approach opens new avenues for trait-based insights into how dispersal, speciation and persistence shape the assembly of entire native island floras.


Asunto(s)
Biodiversidad , Islas , Océanos y Mares , Plantas , Especiación Genética , Rasgos de la Historia de Vida , Fenotipo , Filogenia , Plantas/clasificación , España , Ecología
20.
Aesthet Surg J ; 43(11): NP918-NP923, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37345910

RESUMEN

Artificial intelligence (AI) language models are computer programs trained to understand and generate human-like text. The latest AI language models available to the public have impressive language generation capability with immediate applications in both academia and private practice. Plastic surgeons can immediately leverage this technology to more efficiently allocate valuable human capital to higher-yield tasks. This can ultimately translate to higher patient volume, higher research output, and improved patient communication. Commercially available models offer business solutions that should not be ignored by plastic surgeons hoping to establish, optimize, or grow their practices. In this paper, the authors review the current state of AI language systems, discuss potential applications, and explore the risks and limitations of this technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...