Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 17(838): eado6266, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805583

RESUMEN

Phosphoinositides are essential signaling molecules. The PI5P4K family of phosphoinositide kinases and their substrates and products, PI5P and PI4,5P2, respectively, are emerging as intracellular metabolic and stress sensors. We performed an unbiased screen to investigate the signals that these kinases relay and the specific upstream regulators controlling this signaling node. We found that the core Hippo pathway kinases MST1/2 phosphorylated PI5P4Ks and inhibited their signaling in vitro and in cells. We further showed that PI5P4K activity regulated several Hippo- and YAP-related phenotypes, specifically decreasing the interaction between the key Hippo proteins MOB1 and LATS and stimulating the YAP-mediated genetic program governing epithelial-to-mesenchymal transition. Mechanistically, we showed that PI5P interacted with MOB1 and enhanced its interaction with LATS, thereby providing a signaling connection between the Hippo pathway and PI5P4Ks. These findings reveal how these two important evolutionarily conserved signaling pathways are integrated to regulate metazoan development and human disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Vía de Señalización Hippo/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Activación Transcripcional , Fosforilación , Células HEK293 , Transición Epitelial-Mesenquimal , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Animales , Serina-Treonina Quinasa 3 , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
2.
FEBS Lett ; 596(1): 3-16, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822164

RESUMEN

Cancer cells are challenged by a myriad of microenvironmental stresses, and it is their ability to efficiently adapt to the constantly changing nutrient, energy, oxidative, and/or immune landscape that allows them to survive and proliferate. Such adaptations, however, result in distinct vulnerabilities that are attractive therapeutic targets. Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are a family of druggable stress-regulated phosphoinositide kinases that become conditionally essential as a metabolic adaptation, paving the way to targeting cancer cell dependencies. Further, PI5P4Ks have a synthetic lethal interaction with the tumor suppressor p53, the loss of which is one of the most prevalent genetic drivers of malignant transformation. PI5P4K's emergence as a crucial axis in the expanding landscape of phosphoinositide signaling in cancer has already stimulated the development of specific inhibitors. Thus, a better understanding of the biology of the PI5P4Ks will allow for targeted and effective therapeutic interventions. Here, we attempt to summarize the mounting roles of the PI5P4Ks in cancer, including evidence that targeting them is a therapeutic vulnerability and promising next-in-line treatment for multiple cancer subtypes.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)
3.
Dev Cell ; 56(11): 1661-1676.e10, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33984270

RESUMEN

PI5P4Ks are a class of phosphoinositide kinases that phosphorylate PI-5-P to PI-4,5-P2. Distinct localization of phosphoinositides is fundamental for a multitude of cellular functions. Here, we identify a role for peroxisomal PI-4,5-P2 generated by the PI5P4Ks in maintaining energy balance. We demonstrate that PI-4,5-P2 regulates peroxisomal fatty acid oxidation by mediating trafficking of lipid droplets to peroxisomes, which is essential for sustaining mitochondrial metabolism. Using fluorescent-tagged lipids and metabolite tracing, we show that loss of the PI5P4Ks significantly impairs lipid uptake and ß-oxidation in the mitochondria. Further, loss of PI5P4Ks results in dramatic alterations in mitochondrial structural and functional integrity, which under nutrient deprivation is further exacerbated, causing cell death. Notably, inhibition of the PI5P4Ks in cancer cells and mouse tumor models leads to decreased cell viability and tumor growth, respectively. Together, these studies reveal an unexplored role for PI5P4Ks in preserving metabolic homeostasis, which is necessary for tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Mitocondrias/genética , Neoplasias/metabolismo , Peroxisomas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Línea Celular Tumoral , Metabolismo Energético/genética , Femenino , Homeostasis/genética , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neoplasias/genética , Neoplasias/patología , Peroxisomas/genética
4.
Front Cell Dev Biol ; 9: 791758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071233

RESUMEN

While organelles are individual compartments with specialized functions, it is becoming clear that organellar communication is essential for maintaining cellular homeostasis. This cooperation is carried out by various interactions taking place on the membranes of organelles. The membranes themselves contain a multitude of proteins and lipids that mediate these connections and one such class of molecules facilitating these relations are the phospholipids. There are several phospholipids, but the focus of this perspective is on a minor group called the phosphoinositides and specifically, phosphatidylinositol 4,5-bisphosphate (PI-4,5-P2). This phosphoinositide, on intracellular membranes, is largely generated by the non-canonical Type II PIPKs, namely, Phosphotidylinositol-5-phosphate-4-kinases (PI5P4Ks). These evolutionarily conserved enzymes are emerging as key stress response players in cells. Further, PI5P4Ks have been shown to modulate pathways by regulating organelle crosstalk, revealing roles in preserving metabolic homeostasis. Here we will attempt to summarize the functions of the PI5P4Ks and their product PI-4,5-P2 in facilitating inter-organelle communication and how they impact cellular health as well as their relevance to human diseases.

5.
FEBS J ; 287(2): 222-238, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693781

RESUMEN

Today, the importance of autophagy in physiological processes and pathological conditions is undeniable. Initially, autophagy merely was described as an evolutionarily conserved mechanism to maintain metabolic homeostasis in times of starvation; however, in recent years it is now apparent that autophagy is a powerful regulator of many facets of cellular metabolism, that its deregulation contributes to various human pathologies, including cancer and neurodegeneration, and that its modulation has considerable potential as a therapeutic approach. Different lipid species, including sphingolipids, sterols, and phospholipids, play important roles in the various steps of autophagy. In particular, there is accumulating evidence indicating the minor group of phospholipids called the phosphoinositides as key modulators of autophagy, including the signaling processes underlying autophagy initiation, autophagosome biogenesis and maturation. In this review, we discuss the known functions to date of the phosphoinositides in autophagy and attempt to summarize the kinases and phosphatases that regulate them as well as the proteins that bind to them throughout the autophagy program. We will also provide examples of how the control of phosphoinositides and their metabolizing enzymes is relevant to understanding many human diseases.


Asunto(s)
Autofagia , Fosfatidilinositoles/metabolismo , Animales , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Fosfatidilinositoles/genética
6.
J Exp Med ; 215(1): 17-19, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29222106

RESUMEN

In this issue of JEM, Kaittanis et al. (https://doi.org/10.1084/jem.20171052) report a new signaling role for prostate-specific membrane antigen (PSMA), providing a mechanistic link between two major oncogenic pathways, as well as promising therapeutic implications for the diagnosis and treatment of prostate cancer.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Receptores de Glutamato Metabotrópico , Antígenos de Superficie , Ácido Fólico , Ácido Glutámico , Humanos , Masculino , Neoplasias de la Próstata
7.
Nat Commun ; 8: 14237, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-28128367

RESUMEN

Serotonin, a central neuromodulator with ancient ties to feeding and metabolism, is a major driver of body fat loss. However, mechanisms by which central serotonin action leads to fat loss remain unknown. Here, we report that the FLP-7 neuropeptide and its cognate receptor, NPR-22, function as the ligand-receptor pair that defines the neuroendocrine axis of serotonergic body fat loss in Caenorhabditis elegans. FLP-7 is secreted as a neuroendocrine peptide in proportion to fluctuations in neural serotonin circuit functions, and its release is regulated from secretory neurons via the nutrient sensor AMPK. FLP-7 acts via the NPR-22/Tachykinin2 receptor in the intestine and drives fat loss via the adipocyte triglyceride lipase ATGL-1. Importantly, this ligand-receptor pair does not alter other serotonin-dependent behaviours including food intake. For global modulators such as serotonin, the use of distinct neuroendocrine peptides for each output may be one means to achieve phenotypic selectivity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Neuropéptidos/fisiología , Receptores de Neuropéptido/fisiología , Serotonina/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo/fisiología , Animales , Conducta Animal/fisiología , Ingestión de Alimentos/fisiología , Indoles/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Mutación , Neuronas/fisiología , Neuropéptidos/metabolismo , Sistemas Neurosecretores/fisiología , Piperidinas/farmacología , Receptores Acoplados a Proteínas G , Receptores de Neuropéptido/antagonistas & inhibidores , Receptores de Neuropéptido/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
8.
Elife ; 52016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26919175

RESUMEN

Mechanisms of muscle atrophy are complex and their understanding might help finding therapeutic solutions for pathologies such as amyotrophic lateral sclerosis (ALS). We meta-analyzed transcriptomic experiments of muscles of ALS patients and mouse models, uncovering a p53 deregulation as common denominator. We then characterized the induction of several p53 family members (p53, p63, p73) and a correlation between the levels of p53 family target genes and the severity of muscle atrophy in ALS patients and mice. In particular, we observed increased p63 protein levels in the fibers of atrophic muscles via denervation-dependent and -independent mechanisms. At a functional level, we demonstrated that TAp63 and p53 transactivate the promoter and increased the expression of Trim63 (MuRF1), an effector of muscle atrophy. Altogether, these results suggest a novel function for p63 as a contributor to muscular atrophic processes via the regulation of multiple genes, including the muscle atrophy gene Trim63.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Proteínas Musculares/biosíntesis , Factores de Transcripción/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis , Ubiquitina-Proteína Ligasas/biosíntesis , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ratones , Músculos/patología , Proteínas de Motivos Tripartitos , Proteína p53 Supresora de Tumor/biosíntesis , Regulación hacia Arriba
9.
EMBO Mol Med ; 7(5): 526-46, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25820275

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most common fatal motor neuron disease in adults. Numerous studies indicate that ALS is a systemic disease that affects whole body physiology and metabolic homeostasis. Using a mouse model of the disease (SOD1(G86R)), we investigated muscle physiology and motor behavior with respect to muscle metabolic capacity. We found that at 65 days of age, an age described as asymptomatic, SOD1(G86R) mice presented with improved endurance capacity associated with an early inhibition in the capacity for glycolytic muscle to use glucose as a source of energy and a switch in fuel preference toward lipids. Indeed, in glycolytic muscles we showed progressive induction of pyruvate dehydrogenase kinase 4 expression. Phosphofructokinase 1 was inhibited, and the expression of lipid handling molecules was increased. This mechanism represents a chronic pathologic alteration in muscle metabolism that is exacerbated with disease progression. Further, inhibition of pyruvate dehydrogenase kinase 4 activity with dichloroacetate delayed symptom onset while improving mitochondrial dysfunction and ameliorating muscle denervation. In this study, we provide the first molecular basis for the particular sensitivity of glycolytic muscles to ALS pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Glucólisis , Metabolismo de los Lípidos , Músculos/fisiología , Animales , Modelos Animales de Enfermedad , Ratones , Músculos/metabolismo
10.
J Pharmacol Exp Ther ; 352(1): 23-32, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25326132

RESUMEN

Muscular atrophy, a physiopathologic process associated with severe human diseases such as amyotrophic lateral sclerosis (ALS) or cancer, has been linked to reactive oxygen species (ROS) production. The Notch pathway plays a role in muscle development and in muscle regeneration upon physical injury. In this study, we explored the possibility that the Notch pathway participates in the ROS-related muscular atrophy occurring in cancer-associated cachexia and ALS. We also tested whether hybrid compounds of tocopherol, harboring antioxidant activity, and the omega-alkanol chain, presenting cytoprotective activity, might reduce muscle atrophy and impact the Notch pathway. We identified one tocopherol-omega alkanol chain derivative, AGT251, protecting myoblastic cells against known cytotoxic agents. We showed that this compound presenting antioxidant activity counteracts the induction of the Notch pathway by cytotoxic stress, leading to a decrease of Notch1 and Notch3 expression. At the functional level, these regulations correlated with a repression of the Notch target gene Hes1 and the atrophy/remodeling gene MuRF1. Importantly, we also observed an induction of Notch3 and Hes1 expression in two murine models of muscle atrophy: a doxorubicin-induced cachexia model and an ALS murine model expressing mutated superoxide dismutase 1. In both models, the induction of Notch3 and Hes1 were partially opposed by AGT251, which correlated with ameliorations in body and muscle weight, reduction of muscular atrophy markers, and improved survival. Altogether, we identified a compound of the tocopherol family that protects against muscle atrophy in various models, possibly through the regulation of the Notch pathway.


Asunto(s)
Alcoholes/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Homeodominio/metabolismo , Atrofia Muscular/prevención & control , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Tocoferoles/química , Tocoferoles/farmacología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Animales , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Caquexia/inducido químicamente , Caquexia/prevención & control , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Daño del ADN , Doxorrubicina/efectos adversos , Flavonoides/farmacología , Humanos , Ratones , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Mioblastos/citología , Mioblastos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Receptor Notch3 , Tocoferoles/uso terapéutico , Factor de Transcripción HES-1
11.
PLoS One ; 8(6): e64525, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23785402

RESUMEN

The progressive deterioration of the neuromuscular axis is typically observed in degenerative conditions of the lower motor neurons, such as amyotrophic lateral sclerosis (ALS). Neurodegeneration in this disease is associated with systemic metabolic perturbations, including hypermetabolism and dyslipidemia. Our previous gene profiling studies on ALS muscle revealed down-regulation of delta-9 desaturase, or SCD1, which is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Interestingly, knocking out SCD1 gene is known to induce hypermetabolism and stimulate fatty acid beta-oxidation. Here we investigated whether SCD1 deficiency can affect muscle function and its restoration in response to injury. The genetic ablation of SCD1 was not detrimental per se to muscle function. On the contrary, muscles in SCD1 knockout mice shifted toward a more oxidative metabolism, and enhanced the expression of synaptic genes. Repressing SCD1 expression or reducing SCD-dependent enzymatic activity accelerated the recovery of muscle function after inducing sciatic nerve crush. Overall, these findings provide evidence for a new role of SCD1 in modulating the restorative potential of skeletal muscles.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Estearoil-CoA Desaturasa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/rehabilitación , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción , Fenotipo , Recuperación de la Función , Estearoil-CoA Desaturasa/deficiencia , Estearoil-CoA Desaturasa/genética
12.
Brain ; 136(Pt 2): 483-93, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23114367

RESUMEN

Spasticity is a common and disabling symptom observed in patients with central nervous system diseases, including amyotrophic lateral sclerosis, a disease affecting both upper and lower motor neurons. In amyotrophic lateral sclerosis, spasticity is traditionally thought to be the result of degeneration of the upper motor neurons in the cerebral cortex, although degeneration of other neuronal types, in particular serotonergic neurons, might also represent a cause of spasticity. We performed a pathology study in seven patients with amyotrophic lateral sclerosis and six control subjects and observed that central serotonergic neurons suffer from a degenerative process with prominent neuritic degeneration, and sometimes loss of cell bodies in patients with amyotrophic lateral sclerosis. Moreover, distal serotonergic projections to spinal cord motor neurons and hippocampus systematically degenerated in patients with amyotrophic lateral sclerosis. In SOD1 (G86R) mice, a transgenic model of amyotrophic lateral sclerosis, serotonin levels were decreased in brainstem and spinal cord before onset of motor symptoms. Furthermore, there was noticeable atrophy of serotonin neuronal cell bodies along with neuritic degeneration at disease onset. We hypothesized that degeneration of serotonergic neurons could underlie spasticity in amyotrophic lateral sclerosis and investigated this hypothesis in vivo using tail muscle spastic-like contractions in response to mechanical stimulation as a measure of spasticity. In SOD1 (G86R) mice, tail muscle spastic-like contractions were observed at end-stage. Importantly, they were abolished by 5-hydroxytryptamine-2b/c receptors inverse agonists. In line with this, 5-hydroxytryptamine-2b receptor expression was strongly increased at disease onset. In all, we show that serotonergic neurons degenerate during amyotrophic lateral sclerosis, and that this might underlie spasticity in mice. Further research is needed to determine whether inverse agonists of 5-hydroxytryptamine-2b/c receptors could be of interest in treating spasticity in patients with amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Espasticidad Muscular/patología , Degeneración Nerviosa/patología , Neuronas Serotoninérgicas/patología , Adulto , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/epidemiología , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Espasticidad Muscular/epidemiología , Degeneración Nerviosa/epidemiología
13.
J Biol Chem ; 286(50): 43013-25, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22002055

RESUMEN

Genetic ablations of p73 have shown its implication in the development of the nervous system. However, the relative contribution of ΔNp73 and TAp73 isoforms in neuronal functions is still unclear. In this study, we have analyzed the expression of these isoforms during neuronal death induced by alteration of the amyloid-ß precursor protein function or cisplatin. We observed a concomitant up-regulation of a TAp73 isoform and a down-regulation of a ΔNp73 isoform. The shift in favor of the pro-apoptotic isoform correlated with an induction of the p53/p73 target genes such as Noxa. At a functional level, we showed that TAp73 induced neuronal death and that ΔNp73 has a neuroprotective role toward amyloid-ß precursor protein alteration or cisplatin. We investigated the mechanisms of p73 expression and found that the TAp73 expression was regulated at the promoter level. In contrast, regulation of ΔNp73 protein levels was regulated by phosphorylation at residue 86 and multiple proteases. Thus, this study indicates that tight transcriptional and post-translational mechanisms regulate the p73 isoform ratios that play an important role in neuronal survival.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Daño del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Apoptosis/genética , Apoptosis/fisiología , Células Cultivadas , Inmunoprecipitación de Cromatina , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Immunoblotting , Ratones , Neuronas/citología , Proteínas Nucleares/genética , Fosforilación , Isoformas de Proteínas/genética , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína Tumoral p73 , Proteínas Supresoras de Tumor/genética
14.
Neurosci Res ; 71(1): 35-43, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21663772

RESUMEN

Stimulation of the immune system has been found to enhance, impair, or have no effect on various memory tasks. In the present study, male Wistar rats received saline, lipopolysaccharide (LPS, 250µg/kg in saline, 7 consecutive days), intranigral 6-hydroxydopamine (6-OHDA, 2µg/µl saline; 5µl/site) and intranigral 6-OHDA plus 7 consecutive days of LPS injections and then tested in two cognitive tasks (Y-maze and radial arm-maze). Altered behavioral responses in Y-maze and radial arm-maze tasks were observed in LPS- and LPS+6-OHDA-treated rats compared to control group. Notably, positive correlations were detected among LPS and LPS+6-OHDA-treated rats when behavioral deficits were correlated with indicators of oxidative stress. Taken together, we demonstrated that activation of the immune system with LPS administration induced memory impairment and brain oxidative stress, significantly correlated with nigral lesion promoted by 6-OHDA.


Asunto(s)
Modelos Animales de Enfermedad , Lipopolisacáridos/toxicidad , Trastornos de la Memoria/fisiopatología , Estrés Oxidativo/fisiología , Trastornos Parkinsonianos/fisiopatología , Animales , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Neurotoxinas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA