Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 247: 112313, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37467661

RESUMEN

The interactions of the heme iron of hemeproteins with sulfide and disulfide compounds are of potential interest as physiological signaling processes. While the interaction with hydrogen sulfide has been described computationally and experimentally, the reaction with disulfide, and specifically the molecular mechanism for ligand binding has not been studied in detail. In this work, we study the association process for disulfane and its conjugate base disulfanide at different pH conditions. Additionally, by means of advanced sampling techniques based on multiple steered molecular dynamics, we provide free energy profiles for ligand migration for both acid/base species, showing a similar behavior to the previously reported for the related H2S/HS¯ pair. Finally, we studied the ligand interchange reaction (H2O/H2S, HS¯ and H2O/HSSH, HSS¯) by means of hybrid quantum mechanics-molecular mechanics calculations. We show that the anionic species are able to displace more efficiently the H2O bound to the iron, and that the H-bond network in the distal cavity can help the neutral species to perform the reaction. Altogether, we provide a molecular explanation for the experimental information and show that the global association process depends on a fine balance between the migration towards the active site and the ligand interchange reaction.


Asunto(s)
Hemoproteínas , Hemoproteínas/química , Metamioglobina/química , Disulfuros , Ligandos , Sulfuros/metabolismo , Hierro
2.
Inorg Chem ; 62(29): 11304-11317, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37439562

RESUMEN

The mechanism of the metal centered reduction of metmyoglobin (MbFeIII) by sulfide species (H2S/HS-) under an argon atmosphere has been studied by a combination of spectroscopic, kinetic, and computational methods. Asymmetric S-shaped time-traces for the formation of MbFeII at varying ratios of excess sulfide were observed at pH 5.3 < pH < 8.0 and 25 °C, suggesting an autocatalytic reaction mechanism. An increased rate at more alkaline pHs points to HS- as relevant reactive species for the reduction. The formation of the sulfanyl radical (HS•) in the slow initial phase was assessed using the spin-trap phenyl N-tert-butyl nitrone. This radical initiates the formation of S-S reactive species as disulfanuidyl/ disulfanudi-idyl radical anions and disulfide (HSSH•-/HSS•2- and HSS-, respectively). The autocatalysis has been ascribed to HSS-, formed after HSSH•-/HSS•2- disproportionation, which behaves as a fast reductant toward the intermediate complex MbFeIII(HS-). We propose a reaction mechanism for the sulfide-mediated reduction of metmyoglobin where only ferric heme iron initiates the oxidation of sulfide species. Beside the chemical interest, this insight into the MbFeIII/sulfide reaction under an argon atmosphere is relevant for the interpretation of biochemical aspects of ectopic myoglobins found on hypoxic tissues toward reactive sulfur species.


Asunto(s)
Sulfuro de Hidrógeno , Metamioglobina , Metamioglobina/química , Anaerobiosis , Argón , Mioglobina/química , Oxidación-Reducción , Sulfuros , Cinética
3.
J Inorg Biochem ; 245: 112256, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37244768

RESUMEN

The mechanism of the metal centered reduction of metmyoglobin (MbFeIII) by inorganic disulfide species has been studied by combined spectroscopic and kinetic analyses, under argon atmosphere. The process is kinetically characterized by biexponential time traces, for variable ratios of excess disulfide to protein, in the pH interval 6.6-8.0. Using UV-vis and resonance Raman spectroscopies, we observed that MbFeIII is converted into a low spin hexacoordinated ferric complex, tentatively assigned as MbFeIII(HSS-)/MbFeIII(SS2-), in an initial fast step. The complex is slowly converted into a pentacoordinated ferrous form, assigned as MbFeII according to the resonance Raman records. The reduction is a pH-dependent process, but independent of the initial disulfide concentration, suggesting the unimolecular decomposition of the intermediate complex following a reductive homolysis. We estimated the rate of the fast formation of the complex at pH 7.4 (kon = 3.7 × 103 M-1 s-1), and a pKa2 = 7.5 for the equilibrium MbFeIII(HSS-)/MbFeIII(SS2-). Also, we estimated the rate for the slow reduction at the same pH (kred = 10-2 s-1). A reaction mechanism compliant with the experimental results is proposed. This mechanistic study provides a differential kinetic signature for the reactions of disulfide compared to sulfide species on metmyoglobin, which may be considered in other hemeprotein systems.


Asunto(s)
Hemoproteínas , Metamioglobina , Metamioglobina/química , Metamioglobina/metabolismo , Disulfuros , Análisis Espectral , Hemoproteínas/metabolismo , Hierro , Oxidación-Reducción , Cinética
4.
Antioxid Redox Signal ; 32(4): 247-257, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31530164

RESUMEN

Significance: Sulfides are endogenous and ubiquitous signaling species that share the hemeproteins as biochemical targets with O2, nitric oxide, and carbon monoxide. The description of the binding mechanisms is mandatory to anticipate the biochemical relevance of the interaction. Recent Advances: The binding of sulfide to ferric hemeproteins has been described in more than 40 systems, including native proteins, mutants, and model systems. Mechanisms of sulfide binding to ferric hemeproteins have been examined by a combination of kinetic and computational experiments. The distal control of the association process, dissected into the migration of the ligand to the active site and the binding event, reveals that neutral hydrogen sulfide (H2S) reaches the active site and is the predominant binding ligand, while the HS- is excluded by the protein matrix. Experiments with model compounds, devoid of a protein scaffold, reveal that both H2S and HS- can bind the ferric heme if accessing the site. A critical role of the proximal ligand in the prevention of the metal-centered reduction has been experimentally assessed. For metmyoglobin and methemoglobin, the coordination of sulfide leads to noncanonical functions: sulfide storage and its oxidative detoxification have been evidenced under physiological and excess sulfide concentrations, respectively. Critical Issues: The bound species is suggested to predominate in the monoprotonated form, although spectroscopic evidence is pending. Future Directions: A description of the role of hemeproteins as biochemical targets for inorganic sulfide requires understanding the reactivity of bound sulfide, for example: the metal-centered reduction, the reaction with excess sulfide, oxidants, or other gasotransmitters, among other biomolecules.


Asunto(s)
Hemoproteínas/metabolismo , Sulfuros/metabolismo , Animales , Dominio Catalítico , Hemoproteínas/química , Humanos , Oxidación-Reducción , Unión Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA