Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Prep Biochem Biotechnol ; 54(1): 19-38, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37149786

RESUMEN

Fifty percent of the overall operational expenses of biorefineries are incurred during enzymatic-saccharification processes. Cellulases have a global-market value of $1621 USD. Dearth of conventional lignocelluloses have led to the exploration of their waste stream-based, unconventional sources. Native fungus-employing cellulase-production batches fail to yield sustained enzyme titers. It could be attributed to variations in the enzyme-production broth's quasi-dilatant behavior, its fluid and flow properties; heat and oxygen transfer regimes; kinetics of fungal growth; and nutrient utilization. The current investigation presents one of the first-time usages of a substrate mixture, majorly comprising disposed COVID-19 personal protective-equipment (PPE). To devise a sustainable and scalable cellulase-production process, various variable-regulated, continuous-culture auxostats were performed. The glucose concentration-maintaining auxostat recorded consistent endoglucanase titers throughout its feeding-cum-harvest cycles; furthermore, it enhanced oxygen transfer, heat transfer co-efficient, and mass transfer co-efficient by 91.5, 36, and 77%, respectively. Substrate-characterization revealed that an unintended, autoclave-based organsolv pretreatment caused unanticipated increases in endoglucanase titers. The cumulative lab-scale cellulase-production cost was found to be $16.3. The proposed approach is economical, and it offers a pollution-free waste management process, thereby generating carbon credits.


Asunto(s)
COVID-19 , Celulasa , Celulasas , Humanos , Celulasa/química , COVID-19/prevención & control , Celulasas/química , Calor , Oxígeno
2.
Prep Biochem Biotechnol ; 53(8): 954-967, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36633578

RESUMEN

Biomass pretreatment incurs 40% of the overall cost of biorefinery operations. The usage of mushroom cultivation as a pretreatment/delignification technique, and bio-ethanol production from spent mushroom substrates, after subsequent pretreatment, saccharification and fermentation processes, have been reported earlier. However, the present pilot-scale, entirely-organic demonstration is one of the very first biorefinery models, which efficiently consolidates: biomass pretreatment; in-situ cellulase production and saccharification; mushroom cultivation, thereby improving the overall operational economy. During pretreatment, the oyster mushroom, Pluerotus florida VS-6, matures into distinct substrate mycelia and fruiting bodies. Consequential variations in the kinetics of growth, biomass degradation/substrate utilization, oxygen uptake and transfer rates, and enzyme production, have been analyzed. Signifying the first-time usage of a biomass mixture, comprising vegetative waste and e-commerce packaging waste, the 30 day-long, bio-economical, non-inhibitor-generating, catabolite repression-limited, solid-state in-situ pretreatment-cum-saccharification, resulted in: 78% lignin degradation; 13.25% soluble-sugar release; 18.25% mushroom yield; 0.88 FPU/g.ds cellulase secretion. The in-situ saccharified biomass, when sequentially subjected to ex-situ enzymatic hydrolysis and fermentation, showed 37.35% saccharification, and a bio-ethanol yield of 0.425 g per g of glucose, respectively. Apart from yielding engine-ready bio-ethanol, the model doubles as an agripreneurial proposition, and encourages mushroom cultivation and consumption.


Asunto(s)
Agaricales , Celulasa , Agaricales/metabolismo , Etanol/metabolismo , Carbohidratos , Hidrólisis , Celulasa/metabolismo , Fermentación , Biomasa , Lignina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...