Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Toxicol Sci ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38588579

RESUMEN

Drug hypersensitivity reactions (DHRs) are a type of adverse drug reaction that can occur with different classes of drugs and affect multiple organ systems and patient populations. DHRs can be classified as allergic or non-allergic based on the cellular mechanisms involved. Whereas non-allergic reactions rely mainly on the innate immune system, allergic reactions involve the generation of an adaptive immune response. Consequently, drug allergies are DHRs for which an immunological mechanism, with antibody and/or T cell, is demonstrated. Despite decades of research, methods to predict the potential for a new chemical entity to cause DHRs or to correctly attribute DHRs to a specific mechanism and a specific molecule are not well-established. This review will focus on allergic reactions induced by systemically administered low molecular weight (LMW) drugs with an emphasis on drug- and patient-specific factors that could influence the development of DHRs. Strategies for predicting and diagnosing DHRs, including potential tools based on the current state of the science, will also be discussed.

2.
Arthritis Res Ther ; 26(1): 70, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493208

RESUMEN

BACKGROUND: Although B-cell depleting therapy in rheumatoid arthritis (RA) is clearly effective, response is variable and does not correlate with B cell depletion itself. METHODS: The B-cell receptor (BCR) repertoire was prospectively analyzed in peripheral blood samples of twenty-eight RA patients undergoing rituximab therapy. Timepoints of achieved BCR-depletion and -repopulation were defined based on the percentage of unmutated BCRs in the repertoire. The predictive value of early BCR-depletion (within one-month post-treatment) and early BCR-repopulation (within 6 months post-treatment) on clinical response was assessed. RESULTS: We observed changes in the peripheral blood BCR repertoire after rituximab treatment, i.e., increased clonal expansion, decreased clonal diversification and increased mutation load which persisted up to 12 months after treatment, but started to revert at month 6. Early BCR depletion was not associated with early clinical response but late depleters did show early response. Patients with early repopulation with unmutated BCRs showed a significant decrease in disease activity in the interval 6 to 12 months. Development of anti-drug antibodies non-significantly correlated with more BCR repopulation. CONCLUSION: Our findings indicate that rather than BCR-depletion it is repopulation with unmutated BCRs, possibly from naïve B cells, which induces remission. This suggests that (pre-existing) differences in B-cell turnover between patients explain the interindividual differences in early clinical effect.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Humanos , Rituximab/uso terapéutico , Rituximab/farmacología , Antirreumáticos/uso terapéutico , Antirreumáticos/farmacología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Linfocitos B , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/uso terapéutico
3.
Eur J Pharm Sci ; 192: 106670, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070782

RESUMEN

Aggregation has been widely described as a factor contributing to therapeutic antibody immunogenicity. Although production of high-affinity anti-drug antibodies depends on the activation of CD4 T lymphocytes, little is known about the T-cell response induced by antibody aggregates, especially for aggregates produced in mild conditions resulting from minor handling errors of vials. Large insoluble infliximab (IFX) aggregates produced in severe elevated temperature stress conditions have been previously shown to induce human monocyte-derived dendritic cell (moDC) maturation. We here showed that large IFX aggregates recruit in vitro a significantly higher number of CD4 T-cells compared to native IFX. Moreover, a larger array of T-cell epitopes encompassing the entire variable regions was evidenced compared to the native antibody. We then compared the responses of moDCs to different types of aggregates generated by submitting IFX to mild conditions of various times of incubation at an elevated temperature. Decreasing stress duration reduced aggregate size and quantity, and subsequently altered moDC activation. Of importance, IFX aggregates generated in mild conditions and not altering moDC phenotype generated an in vitro T-cell response with a higher frequency of CD4 T cells compared to native IFX. Moreover, cross-reactivity studies of aggregate-specific T cells showed that some T cells could recognize both native and aggregated IFX, while others responded only to IFX aggregates. Taken together, our results suggest that aggregation of antibodies in mild elevated temperature stress conditions is sufficient to alter moDC phenotype in a dose-dependent manner and to increase T-cell response.


Asunto(s)
Linfocitos T CD4-Positivos , Monocitos , Humanos , Infliximab/farmacología , Linfocitos T CD4-Positivos/metabolismo , Temperatura
5.
Eur J Immunol ; 54(2): e2250340, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37985174

RESUMEN

Internalization and processing by antigen-presenting cells such as dendritic cells (DCs) are critical steps for initiating a T-cell response to therapeutic antibodies. Consequences are the production of neutralizing antidrug antibodies altering the clinical response, the presence of immune complexes, and, in some rare cases, hypersensitivity reactions. In recent years, significant progress has been made in the knowledge of cellular uptake mechanisms of antibodies in DCs. The uptake of antibodies could be directly related to their immunogenicity by regulating the quantity of materials entering the DCs in relation to antibody structure. Here, we summarize the latest insights into cellular uptake mechanisms and pathways in DCs. We highlight the approaches to study endocytosis, the impact of endocytosis routes on T-cell response, and discuss the link between how DCs internalize therapeutic antibodies and the potential mechanisms that could give rise to immunogenicity. Understanding these processes could help in developing assays to evaluate the immunogenicity potential of biotherapeutics.


Asunto(s)
Anticuerpos , Células Dendríticas , Anticuerpos/metabolismo , Linfocitos T , Endocitosis
6.
Toxicol Lett ; 384: 96-104, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451652

RESUMEN

The evaluation of chemical and pharmaceutical safety for humans is moving from animal studies to New Approach Methodologies (NAM), reducing animal use and focusing on mechanism of action, whilst enhancing human relevance. In developmental toxicology, the mechanistic approach is facilitated by the assessment of predictive biomarkers, which allow mechanistic pathways perturbation monitoring at the basis of human hazard assessment. In our search for biomarkers of maldevelopment, we focused on chemically-induced perturbation of the retinoic acid signaling pathway (RA-SP), a major pathway implicated in a plethora of developmental processes. A genome-wide expression screening was performed on zebrafish embryos treated with two teratogens, all-trans retinoic acid (ATRA) and valproic acid (VPA), and a non-teratogen reference compound, folic acid (FA). Each compound was found to have a specific mRNA expression profile with 248 genes commonly dysregulated by both teratogenic compounds but not by FA. These genes were implicated in several developmental processes (e.g., the circulatory and nervous system). Given the prominent response of neurodevelopmental gene sets, and the crucial need to better understand developmental neurotoxicity, our study then focused on nervous system development. We found 62 genes that are potential early neurodevelopmental toxicity biomarker candidates. These results advance NAM-based safety assessment evaluation by highlighting the usefulness of the RA-SP in providing early toxicity biomarker candidates.


Asunto(s)
Tretinoina , Pez Cebra , Animales , Humanos , Tretinoina/toxicidad , Pez Cebra/genética , Pez Cebra/metabolismo , Ácido Valproico/toxicidad , Regulación de la Expresión Génica , Teratógenos/toxicidad , Biomarcadores , Sistema Nervioso/metabolismo , Regulación del Desarrollo de la Expresión Génica , Embrión no Mamífero
7.
JAMA Netw Open ; 6(7): e2323098, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37436748

RESUMEN

Importance: There are conflicting data on the association of antidrug antibodies with response to biologic disease-modifying antirheumatic drugs (bDMARDs) in rheumatoid arthritis (RA). Objective: To analyze the association of antidrug antibodies with response to treatment for RA. Design, Setting, and Participants: This cohort study analyzed data from the ABI-RA (Anti-Biopharmaceutical Immunization: Prediction and Analysis of Clinical Relevance to Minimize the Risk of Immunization in Rheumatoid Arthritis Patients) multicentric, open, prospective study of patients with RA from 27 recruiting centers in 4 European countries (France, Italy, the Netherlands, and the UK). Eligible patients were 18 years or older, had RA diagnosis, and were initiating a new bDMARD. Recruitment spanned from March 3, 2014, to June 21, 2016. The study was completed in June 2018, and data were analyzed in June 2022. Exposures: Patients were treated with a new bDMARD: adalimumab, infliximab (grouped as anti-tumor necrosis factor [TNF] monoclonal antibodies [mAbs]), etanercept, tocilizumab, and rituximab according to the choice of the treating physician. Main Outcomes and Measures: The primary outcome was the association of antidrug antibody positivity with EULAR (European Alliance of Associations for Rheumatology; formerly, European League Against Rheumatism) response to treatment at month 12 assessed through univariate logistic regression. The secondary end points were the EULAR response at month 6 and at visits from month 6 to months 15 to 18 using generalized estimating equation models. Detection of antidrug antibody serum levels was performed at months 1, 3, 6, 12, and 15 to 18 using electrochemiluminescence (Meso Scale Discovery) and drug concentration for anti-TNF mAbs, and etanercept in the serum was measured using enzyme-linked immunosorbent assay. Results: Of the 254 patients recruited, 230 (mean [SD] age, 54.3 [13.7] years; 177 females [77.0%]) were analyzed. At month 12, antidrug antibody positivity was 38.2% in patients who were treated with anti-TNF mAbs, 6.1% with etanercept, 50.0% with rituximab, and 20.0% with tocilizumab. There was an inverse association between antidrug antibody positivity (odds ratio [OR], 0.19; 95% CI, 0.09-0.38; P < .001) directed against all biologic drugs and EULAR response at month 12. Analyzing all the visits starting at month 6 using generalized estimating equation models confirmed the inverse association between antidrug antibody positivity and EULAR response (OR, 0.35; 95% CI, 0.18-0.65; P < .001). A similar association was found for tocilizumab alone (OR, 0.18; 95% CI, 0.04-0.83; P = .03). In the multivariable analysis, antidrug antibodies, body mass index, and rheumatoid factor were independently inversely associated with response to treatment. There was a significantly higher drug concentration of anti-TNF mAbs in patients with antidrug antibody-negative vs antidrug antibody-positive status (mean difference, -9.6 [95% CI, -12.4 to -6.9] mg/L; P < 001). Drug concentrations of etanercept (mean difference, 0.70 [95% CI, 0.2-1.2] mg/L; P = .005) and adalimumab (mean difference, 1.8 [95% CI, 0.4-3.2] mg/L; P = .01) were lower in nonresponders vs responders. Methotrexate comedication at baseline was inversely associated with antidrug antibodies (OR, 0.50; 95% CI, 0.25-1.00; P = .05). Conclusions and Relevance: Results of this prospective cohort study suggest an association between antidrug antibodies and nonresponse to bDMARDs in patients with RA. Monitoring antidrug antibodies could be considered in the treatment of these patients, particularly nonresponders to biologic RA drugs.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Productos Biológicos , Femenino , Humanos , Persona de Mediana Edad , Etanercept/uso terapéutico , Adalimumab/uso terapéutico , Estudios Prospectivos , Rituximab/uso terapéutico , Estudios de Cohortes , Productos Biológicos/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Antirreumáticos/uso terapéutico , Factor de Necrosis Tumoral alfa
9.
Reprod Toxicol ; 119: 108404, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37207909

RESUMEN

The zebrafish embryo (ZE) model provides a developmental model well conserved throughout vertebrate embryogenesis, with relevance for early human embryo development. It was employed to search for gene expression biomarkers of compound-induced disruption of mesodermal development. We were particularly interested in the expression of genes related to the retinoic acid signaling pathway (RA-SP), as a major morphogenetic regulating mechanism. We exposed ZE to teratogenic concentrations of valproic acid (VPA) and all-trans retinoic acid (ATRA), using folic acid (FA) as a non-teratogenic control compound shortly after fertilization for 4 h, and performed gene expression analysis by RNA sequencing. We identified 248 genes specifically regulated by both teratogens but not by FA. Further analysis of this gene set revealed 54 GO-terms related to the development of mesodermal tissues, distributed along the paraxial, intermediate, and lateral plate sections of the mesoderm. Gene expression regulation was specific to tissues and was observed for somites, striated muscle, bone, kidney, circulatory system, and blood. Stitch analysis revealed 47 regulated genes related to the RA-SP, which were differentially expressed in the various mesodermal tissues. These genes provide potential molecular biomarkers of mesodermal tissue and organ (mal)formation in the early vertebrate embryo.


Asunto(s)
Tretinoina , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Tretinoina/metabolismo , Transcriptoma , Mesodermo/metabolismo , Transducción de Señal , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica
10.
Part Fibre Toxicol ; 20(1): 12, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076877

RESUMEN

BACKGROUND: Synthetic amorphous silica nanoparticles (SAS-NPs) are widely employed in pharmaceutics, cosmetics, food and concretes. Workers and the general population are exposed daily via diverse routes of exposure. SAS-NPs are generally recognized as safe (GRAS) by the Food and Drug Administration, but because of their nanoscale size and extensive uses, a better assessment of their immunotoxicity is required. In the presence of immune "danger signals", dendritic cells (DCs) undergo a maturation process resulting in their migration to regional lymph nodes where they activate naive T-cells. We have previously shown that fumed silica pyrogenic SAS-NPs promote the two first steps of the adaptative immune response by triggering DC maturation and T-lymphocyte response, suggesting that SAS-NPs could behave as immune "danger signals". The present work aims to identify the mechanism and the signalling pathways involved in DC phenotype modifications provoked by pyrogenic SAS-NPs. As a pivotal intracellular signalling molecule whose phosphorylation is associated with DC maturation, we hypothesized that Spleen tyrosine kinase (Syk) may play a central role in SAS-NPs-induced DC response. RESULTS: In human monocyte-derived dendritic cells (moDCs) exposed to SAS-NPs, Syk inhibition prevented the induction of CD83 and CD86 marker expression. A significant decrease in T-cell proliferation and IFN-γ, IL-17F and IL-9 production was found in an allogeneic moDC:T-cell co-culture model. These results suggested that the activation of Syk was necessary for optimal co-stimulation of T-cells. Moreover, Syk phosphorylation, observed 30 min after SAS-NP exposure, occurred upstream of the c-Jun N-terminal kinase (JNK) Mitogen-activated protein kinases (MAPK) and was elicited by the Src family of protein tyrosine kinases. Our results also showed for the first time that SAS-NPs provoked aggregation of lipid rafts in moDCs and that MßCD-mediated raft destabilisation altered Syk activation. CONCLUSIONS: We showed that SAS-NPs could act as an immune danger signal in DCs through a Syk-dependent pathway. Our findings revealed an original mechanism whereby the interaction of SAS-NPs with DC membranes promoted aggregation of lipid rafts, leading to a Src kinase-initiated activation loop triggering Syk activation and functional DC maturation.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Humanos , Dióxido de Silicio/toxicidad , Dióxido de Silicio/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Fosforilación , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Nanopartículas/toxicidad , Células Dendríticas , Quinasa Syk/metabolismo
11.
Reprod Toxicol ; 115: 8-16, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375755

RESUMEN

The zebrafish embryotoxicity test (ZET) is widely used in developmental toxicology. The analysis of gene expression regulation in ZET after chemical exposure provides mechanistic information about the effects of chemicals on morphogenesis in the test. The gene expression response magnitude has been shown to change with exposure duration. The objective of this work is to study the effect of the exposure duration on the magnitude of gene expression changes in the all-trans retinoic acid (ATRA) signaling pathway in the ZET. Retinoic acid regulation is a key driver of morphogenesis and is therefore employed here as an indicator for the regulation of developmental genes. A teratogenic concentration of 7.5 nM of ATRA was given at 3 hrs post fertilization (hpf) for a range of exposure durations until 120 hrs of development. The expression of a selection of genes related to ATRA signaling and downstream developmental genes was determined. The highest magnitudes of gene expression regulation were observed after 2-24 hrs exposure with an optimal response after 4 hrs. Longer exposures showed a decrease in the gene expression response, although continued exposure to 120 hpf caused malformations and lethality. This study shows that assessment of gene expression regulation at early time points after the onset of exposure in the ZET may be optimal for the prediction of developmental toxicity. We believe these results could help optimize sensitivity in future studies with ZET.


Asunto(s)
Embrión no Mamífero , Pez Cebra , Animales , Pez Cebra/fisiología , Tretinoina/metabolismo , Morfogénesis , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica
12.
Environ Health Perspect ; 130(10): 105001, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36201310

RESUMEN

BACKGROUND: Key characteristics (KCs), properties of agents or exposures that confer potential hazard, have been developed for carcinogens and other toxicant classes. KCs have been used in the systematic assessment of hazards and to identify assay and data gaps that limit screening and risk assessment. Many of the mechanisms through which pharmaceuticals and occupational or environmental agents modulate immune function are well recognized. Thus KCs could be identified for immunoactive substances and applied to improve hazard assessment of immunodulatory agents. OBJECTIVES: The goal was to generate a consensus-based synthesis of scientific evidence describing the KCs of agents known to cause immunotoxicity and potential applications, such as assays to measure the KCs. METHODS: A committee of 18 experts with diverse specialties identified 10 KCs of immunotoxic agents, namely, 1) covalently binds to proteins to form novel antigens, 2) affects antigen processing and presentation, 3) alters immune cell signaling, 4) alters immune cell proliferation, 5) modifies cellular differentiation, 6) alters immune cell-cell communication, 7) alters effector function of specific cell types, 8) alters immune cell trafficking, 9) alters cell death processes, and 10) breaks down immune tolerance. The group considered how these KCs could influence immune processes and contribute to hypersensitivity, inappropriate enhancement, immunosuppression, or autoimmunity. DISCUSSION: KCs can be used to improve efforts to identify agents that cause immunotoxicity via one or more mechanisms, to develop better testing and biomarker approaches to evaluate immunotoxicity, and to enable a more comprehensive and mechanistic understanding of adverse effects of exposures on the immune system. https://doi.org/10.1289/EHP10800.


Asunto(s)
Sustancias Peligrosas , Sistema Inmunológico , Carcinógenos , Consenso , Sustancias Peligrosas/toxicidad , Preparaciones Farmacéuticas
13.
Front Allergy ; 3: 1007602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249342

RESUMEN

Soon after the release of the new anti-COVID mRNA vaccines, reports came in from the US and the UK of anaphylactic reactions. Fueled by the necessary caution toward these new vaccine platforms, these reports had a great impact and were largely commented upon in the scientific literature and global media. The current estimated frequency is of 5 cases per million doses. Very little biological data are presented in the literature to support the anaphylaxis diagnosis in these patients in addition to skin tests. Allergic reactions to vaccines are rare and mostly due to vaccine excipient. Therefore, the poly-ethylene-glycol (PEG) present in both mRNA formulation, and already known to be immunogenic, was soon suspected to be the potential culprit. Several hypersensitivity mechanisms to PEG or to other vaccine components can be suspected, even if the classical IgE-dependent anaphylaxis seems to be one of the most plausible candidates. In the early 2022, the international guidelines recommended to perform skin prick tests and basophil activation tests (BAT) in people experiencing allergic reaction to the first dose of COVID-19 vaccine or with a history of PEG allergy. The aim of this review is to discuss the main potential mechanisms of immediate allergy to COVID19 vaccines based on published data, together with the various techniques used to confirm or not sensitization to one component.

14.
RMD Open ; 8(2)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35999028

RESUMEN

OBJECTIVES: Around 30% of patients with rheumatoid arthritis (RA) do not respond to tumour necrosis factor inhibitors (TNFi). We aimed to predict patient response to TNFi using machine learning on simple clinical and biological data. METHODS: We used data from the RA ESPOIR cohort to train our models. The endpoints were the EULAR response and the change in Disease Activity Score (DAS28). We compared the performances of multiple models (linear regression, random forest, XGBoost and CatBoost) on the training set and cross-validated them using the area under the receiver operating characteristic curve (AUROC) or the mean squared error. The best model was then evaluated on a replication cohort (ABIRISK). RESULTS: We included 161 patients from ESPOIR and 118 patients from ABIRISK. The key selected features were DAS28, lymphocytes, ALT (aspartate aminotransferase), neutrophils, age, weight, and smoking status. When predicting EULAR response, CatBoost achieved the best performances of the four tested models. It reached an AUROC of 0.72 (0.68-0.73) on the train set (ESPOIR). Better results were obtained on the train set when etanercept and monoclonal antibodies were analysed separately. On the test set (ABIRISK), these models respectively achieved on AUROC of 0.70 (0.57-0.82) and 0.71 (0.55-0.86). Two decision thresholds were tested. The first prioritised a high confidence in identifying responders and yielded a confidence up to 90% for predicting response. The second prioritised a high confidence in identifying inadequate responders and yielded a confidence up to 70% for predicting non-response. The change in DAS28 was predicted with an average error of 1.1 DAS28 points. CONCLUSION: The machine learning models developed allowed predicting patient response to TNFi exclusively using data available in clinical routine.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Antirreumáticos/uso terapéutico , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/tratamiento farmacológico , Etanercept/farmacología , Etanercept/uso terapéutico , Humanos , Aprendizaje Automático , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico
15.
J Neuroimmunol ; 370: 577932, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35853357

RESUMEN

A significant proportion of multiple sclerosis (MS) patients treated with interferon beta-1a (Rebif™) develop anti-drug antibodies (ADA) with a negative impact on treatment efficacy. We hypothesized that high-throughput B-cell receptor (BCR) repertoire analysis could be used to predict and monitor ADA development. To study this we analyzed 228 peripheral blood samples from 68 longitudinally followed patients starting on interferon beta-1a. Our results show that whole blood BCR analysis does not reflect, and does not predict ADA development in MS patients treated with interferon beta-1a. We propose that BCR analysis of phenotypically selected cell subsets or tissues might be more informative.


Asunto(s)
Esclerosis Múltiple , Anticuerpos/inmunología , Humanos , Interferón beta-1a/efectos adversos , Interferón beta-1a/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Receptores de Antígenos de Linfocitos B/sangre , Receptores de Antígenos de Linfocitos B/inmunología
16.
J Immunotoxicol ; 19(1): 41-52, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35767473

RESUMEN

Although an extrapolation from the clinical experience in adults can often be considered to support the pediatric use for most pharmaceutical compounds, differences in safety profiles between adult and pediatric patients can be observed. The developing immune system may be affected due to exaggerated pharmacological or non-expected effects of a new drug. Toxicology studies in juvenile animals could therefore be required to better evaluate the safety profile of any new pharmaceutical compound targeting the pediatric population. The Göttingen minipig is now considered a useful non-rodent species for non-clinical safety testing of human pharmaceuticals. However, knowledge on the developing immune system in juvenile minipigs is still limited. The objective of the work reported here was to evaluate across-age proportions of main immune cells circulating in blood or residing in lymphoid organs (thymus, spleen, lymph nodes) in Göttingen Minipigs. In parallel, the main immune cell populations from healthy and immunocompromised piglets were compared following treatment with cyclosporin A (CsA) at 10 mg/kg/day for 4 wk until weaning. The study also assessed functionality of immune responses using an in-vivo model after "Keyhole limpet hemocyanin" (KLH) immunization and an ex-vivo lymph proliferation assay after stimulation with Concanavalin A. The results demonstrated variations across age in circulating immune cell populations including CD21+ B-cells, αß-T- and γδ-T-cells, NK cells, and monocytes. CsA-induced changes in immune functions were only partially recovered by 5 mo after the end of treatment, whereas the immune cell populations affected by the treatment returned to normal levels in animals of the same age. Taken together, the study here shows that in this model, the immune function endpoints were more sensitive than the immunophenotyping endpoints.


Asunto(s)
Linfocitos B , Ciclosporina , Animales , Niño , Ciclosporina/farmacología , Humanos , Inmunización , Preparaciones Farmacéuticas , Porcinos , Porcinos Enanos/fisiología
17.
Front Med (Lausanne) ; 9: 856917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721087

RESUMEN

Despite being assayed on commercialized DNA chips, the X chromosome is commonly excluded from genome-wide association studies (GWAS). One of the reasons is the complexity to analyze the data taking into account the X-chromosome inactivation (XCI) process in women and in particular the XCI process with a potentially skewed pattern. This is the case when investigating the role of X-linked genetic variants in the occurrence of anti-drug antibodies (ADAs) in patients with autoimmune diseases treated by biotherapies. In this context, we propose a novel test statistic for selecting loci of interest harbored by the X chromosome that are associated with time-to-event data taking into account skewed X-inactivation (XCI-S). The proposed statistic relies on a semi-parametric additive hazard model and is straightforward to implement. Results from the simulation study show that the test provides higher power gains than the score tests from the Cox model (under XCI process or its escape) and the Xu et al.'s XCI-S likelihood ratio test. We applied the test to the data from the real-world observational multicohort study set-up by the IMI-funded ABIRISK consortium for identifying X chromosome susceptibility loci for drug immunogenicity in patients with autoimmune diseases treated by biotherapies. The test allowed us to select two single nucleotide polymorphisms (SNPs) with high linkage disequilibrium (rs5991366 and rs5991394) located in the cytoband Xp22.2 that would have been overlooked by the Cox score tests and the Xu et al.'s XCI-S likelihood ratio test. Both SNPs showed a similar protective effect for drug immunogenicity without any occurrence of ADA positivity for the homozygous females and hemizygous males for the alternative allele. To our knowledge, this is the first study to investigate the association between X chromosome loci and the occurrence of anti-drug antibodies. We think that more X-Chromosome GWAS should be performed and that the test is well-suited for identifying X-Chromosome SNPs, while taking into account all patterns of the skewed X-Chromosome inactivation process.

18.
Front Toxicol ; 4: 851017, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35373185

RESUMEN

Allergic contact dermatitis (ACD) is a complex skin pathology occurring in reaction against environmental substances found in the workplace (cement, hair dyes, textile dyes), in the private environment (e.g., household products, cosmetic ingredients), or following skin exposure to drugs. Many cells are involved in the initiation of ACD during the sensitization phase. The four key events (KE) of skin sensitization AOP are covalent binding to skin proteins (KE1), keratinocyte activation (KE2), activation of DCs (KE3), and T-cell activation and proliferation (KE4), leading to the adverse outcome of ACD. Dendritic cells (DCs) are thus playing a key role in ACD pathophysiology. Indeed, in the presence of chemical sensitizers, DCs migrate from the skin to the draining lymph nodes and present peptide-chemical conjugates to T cells, leading to their activation and proliferation. In vitro methods have been actively developed to assess the activation of DCs by chemicals to establish a reliable in vitro sensitization test. Therefore, this review will detail the most used methods and protocols to develop DC models in vitro. Three different models of DCs will be addressed: 1) DCs derived from Cord Blood (CD34-DCs), 2) DCs derived from Monocytes (Mo-DCs), and 3) DCs derived from mice Bone-Marrow (BM-DCs). In addition, a model of exposition to contact sensitizers to assess KE3 of skin sensitization will be detailed for each of the models presented.

19.
Front Immunol ; 13: 832117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281074

RESUMEN

Introduction: We previously reported a specific defect of rheumatoid arthritis (RA) monocyte polarization to anti-inflammatory M2-like macrophages related to increased miR-155 expression in all RA patients except those receiving adalimumab (ADA). In this longitudinal study, we examined whether different tumor necrosis factor inhibitors were able to restore monocyte polarization to M2-like macrophages and their effect on the transcriptomic signature. Methods: M2-like polarization induced by human serum AB was studied in 7 healthy donors and 20 RA patients included in the ABIRA cohort before and 3 months after starting ADA or etanercept (ETA). The differential gene expression of M2- and M1-related transcripts was studied in macrophage-derived monocytes after differentiation. Results: At baseline, RA monocytes showed a defect of polarization to M2-like macrophages as compared with healthy donor monocytes, which was negatively correlated with disease activity. M2-like polarization from circulating monocytes was restored only with ADA and not ETA treatment. The transcriptomic signature demonstrated downregulation of M2-related transcripts and upregulation of M1-related transcripts in active RA. In patients receiving ADA, the transcriptomic signature of M2-related transcripts was restored. Conclusion: This longitudinal study demonstrates that ADA but not ETA is able to restore the M2-like polarization of monocytes that is defective in RA.


Asunto(s)
Artritis Reumatoide , Adalimumab/farmacología , Adalimumab/uso terapéutico , Artritis Reumatoide/metabolismo , Etanercept/farmacología , Etanercept/uso terapéutico , Humanos , Estudios Longitudinales , Macrófagos/metabolismo
20.
Antioxidants (Basel) ; 11(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35326225

RESUMEN

Keratinocytes (KC) play a crucial role in epidermal barrier function, notably through their metabolic activity and the detection of danger signals. Chemical sensitizers are known to activate the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), leading to cellular detoxification and suppressed proinflammatory cytokines such as IL-1ß, a key cytokine in skin allergy. We investigated the role of Nrf2 in the control of the proinflammatory response in human KC following treatment with Cinnamaldehyde (CinA), a well-known skin sensitizer. We used the well-described human KC cell line KERTr exposed to CinA. Our results showed that 250 µM of CinA did not induce any Nrf2 accumulation but increased the expression of proinflammatory cytokines. In contrast, 100 µM of CinA induced a rapid accumulation of Nrf2, inhibited IL-1ß transcription, and downregulated the zymosan-induced proinflammatory response. Moreover, Nrf2 knockdown KERTr cells (KERTr ko) showed an increase in proinflammatory cytokines. Since the inhibition of Nrf2 has been shown to alter cellular metabolism, we performed metabolomic and seahorse analyses. The results showed a decrease in mitochondrial metabolism following KERTr ko exposure to CinA 100 µM. In conclusion, the fate of Nrf2 controls proinflammatory cytokine production in KCs that could be linked to its capacity to preserve mitochondrial metabolism upon chemical sensitizer exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA