Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 281(1): H316-24, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11406499

RESUMEN

Nitric oxide (NO) generation by the outer medullary descending vasa recta (OMDVR) was measured with the fluorescent dye 4,5-diaminofluoroscein (DAF-2) during 30-min incubations. Addition of 0.1 or 1.0 mM L-arginine to the incubation buffer increased the DAF-2 signal by 8.7 and 13.6% (P = 0.08 and P < 0.05), respectively. Compared with L-arginine alone (0.1 mM), bradykinin (BK; 1 x 10(-7) M) enhanced the DAF-2 signal by 11.1% (P < 0.05). The NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (0.1 mM) reversed the BK-stimulated NO generation as measured with either DAF-2 or by the oxidation of Fe(2+) hemoglobin. Using 1 mM 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (tempol), a cell-permeant superoxide dismutase mimetic, we tested whether reduction of superoxide anion increases intracellular NO. Tempol increased DAF-2 fluorescence by 12 and 23.3%, respectively, over BK-stimulated or control vessels. Tempol also vasodilated ANG II (1 x 10(-8) M)-preconstricted OMDVR (P < 0.05). We conclude that NO generation by isolated OMDVR can be increased by L-arginine, that the endothelium-dependent vasodilator BK enhances NO production, and that NO consumption by superoxide plays a role in the determination of cellular NO concentrations.


Asunto(s)
Médula Renal/irrigación sanguínea , Óxido Nítrico/biosíntesis , Animales , Antioxidantes/farmacología , Arginina/farmacología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Bradiquinina/farmacología , Óxidos N-Cíclicos/farmacología , Fluoresceína , Técnicas In Vitro , Indicadores y Reactivos , Concentración Osmolar , Ratas , Ratas Sprague-Dawley , Marcadores de Spin
2.
Exp Nephrol ; 9(3): 165-70, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11340300

RESUMEN

Pericytes are contractile smooth muscle-like cells that surround descending vasa recta (DVR) and provide their capability for vasomotion. The importance of the medullary pericyte derives from the role of DVR to distribute most or all of the blood flow from juxtamedullary cortex to the renal inner and outer medulla. Physiological processes that are likely to be influenced by pericyte constriction of DVR include the urinary concentrating mechanism and pressure natriuresis. Oxygen tensions in the medulla are low, so that subtle variation of pericyte vasomotion might play a role to abrogate hypoxia and prevent insult to the medullary thick ascending limb of Henle. Known vasoconstrictors of DVR include angiotensin II, endothelins, norepinephrine, acetylcholine, and adenosine. Vasodilators include prostaglandin E2, adenosine, acetylcholine, bradykinin, and nitric oxide.


Asunto(s)
Médula Renal/irrigación sanguínea , Pericitos/fisiología , Sistema Vasomotor/anatomía & histología , Animales , Predicción , Humanos , Capacidad de Concentración Renal , Corteza Renal/irrigación sanguínea , Médula Renal/anatomía & histología , Médula Renal/metabolismo , Microcirculación/anatomía & histología , Microcirculación/efectos de los fármacos , Oxígeno/metabolismo , Pericitos/efectos de los fármacos , Pericitos/ultraestructura , Circulación Renal/efectos de los fármacos , Vasoconstrictores/sangre , Vasoconstrictores/farmacología , Vasodilatadores/sangre , Vasodilatadores/farmacología , Sistema Vasomotor/efectos de los fármacos
3.
Am J Physiol Regul Integr Comp Physiol ; 280(6): R1878-86, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11353695

RESUMEN

We investigated the dependence of ANG II (10(-8) M)-induced constriction of outer medullary descending vasa recta (OMDVR) on membrane potential (Psim) and chloride ion. ANG II depolarized OMDVR, as measured by fully loading them with the voltage-sensitive dye bis[1,3-dibutylbarbituric acid-(5)] trimethineoxonol [DiBAC(4)(3)] or selectively loading their pericytes. ANG II was also observed to depolarize pericytes from a resting value of -55.6 +/- 2.6 to -26.2 +/- 5.4 mV when measured with gramicidin D-perforated patches. When measured with DiBAC(4)(3) in unstimulated vessels, neither changing extracellular Cl(-) concentration ([Cl(-)]) nor exposure to the chloride channel blocker indanyloxyacetic acid 94 (IAA-94; 30 microM) affected Psim. In contrast, IAA-94 repolarized OMDVR pretreated with ANG II. Neither IAA-94 (30 microM) nor niflumic acid (30 microM, 1 mM) affected the vasoactivity of unstimulated OMDVR, whereas both dilated ANG II-preconstricted vessels. Reduction of extracellular [Cl(-)] from 150 to 30 meq/l enhanced ANG II-induced constriction. Finally, we identified a Cl(-) channel in OMDVR pericytes that is activated by ANG II or by excision into extracellular buffer. We conclude that constriction of OMDVR by ANG II involves pericyte depolarization due, in part, to increased activity of chloride channels.


Asunto(s)
Angiotensina II/farmacología , Cloruros/fisiología , Médula Renal/irrigación sanguínea , Vasoconstricción , Animales , Barbitúricos , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/fisiología , Calibración , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/fisiología , Cloruros/farmacología , Glicolatos/farmacología , Isoxazoles , Potenciales de la Membrana/efectos de los fármacos , Ácido Niflúmico/farmacología , Cloruro de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Vasoconstricción/efectos de los fármacos
4.
Am J Physiol Regul Integr Comp Physiol ; 280(3): R854-61, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11171666

RESUMEN

We tested whether dilation of outer medullary descending vasa recta (OMDVR) is mediated by cAMP, nitric oxide (NO), and cyclooxygenase (COX). Adenosine (A; 10(-6) M)-induced vasodilation of ANG II (10(-9) M)-preconstricted OMDVR was mimicked by the cAMP analog 8-bromoadenosine 3',5'-cyclic monophosphate (10(-10) to 10(-4) M) and reversed by the adenylate cyclase inhibitor SQ-22536. Adenosine (10(-4) M) stimulated OMDVR cAMP production greater than threefold. NO synthase blockade with N(G)-nitro-L-arginine methyl ester and N(G)-monomethyl-L-arginine (10(-4) M) did not affect adenosine vasodilation. Adenosine induced endothelial cytoplasmic calcium transients that were small. Indomethacin (10(-6) M) reversed adenonsine-induced dilation of OMDVR preconstricted with ANG II, endothelin, 4-bromo-calcium ionophore A23187, or carbocyclic thromboxane A(2). In contrast, selective A(2)-receptor activation dilated endothelin-preconstricted OMDVR even in the presence of indomethacin. We conclude that OMDVR vasodilation by adenosine involves cAMP and COX but not NO. COX blockade does not fully inhibit selective A(2) receptor-mediated OMDVR dilation.


Asunto(s)
Adenina/análogos & derivados , Adenosina/fisiología , Médula Renal/irrigación sanguínea , Transducción de Señal , Tromboxano A2/análogos & derivados , Vasodilatación , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Adenina/farmacología , Adenosina/farmacología , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Angiotensina II/farmacología , Animales , Calcimicina/farmacología , Calcio/metabolismo , Colforsina/farmacología , AMP Cíclico/fisiología , Inhibidores de la Ciclooxigenasa/farmacología , Endotelio Vascular/fisiología , Inhibidores Enzimáticos/farmacología , Femenino , Ionóforos , Cinética , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P1/efectos de los fármacos , Receptores Purinérgicos P1/fisiología , Tromboxano A2/farmacología , Vasodilatación/efectos de los fármacos , omega-N-Metilarginina/farmacología
6.
Front Biosci ; 5: E36-52, 2000 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10833463

RESUMEN

Blood flow to the renal medulla is supplied through descending vasa recta (DVR), which are derived from the efferent arterioles of juxtamedullary glomeruli. In addition to their role as conduits for blood flow, it is accepted that the vasa recta are countercurrent exchangers. That process, however, involves events which are more complicated than paracellular diffusive exchange of NaCl and urea. Urea transport in DVR is accommodated through the combined expression of endothelial and erythrocyte facilitated carriers while transport of water involves solute driven efflux across water channels. Unlike DVR, which have a continuous endothelium, ascending vasa recta (AVR) are fenestrated with a very high hydraulic conductivity. Transport of water in AVR is probably governed by transmural hydraulic and oncotic pressure gradients. The parallel arrangement of DVR in outer medullary vascular bundles coupled with their capacity for vasomotion implies a role for regulation of the regional distribution of blood flow within the medulla The importance of the latter process in the urinary concentrating mechanism and the exchange of nutrients and O2 is poorly defined. The large number of hormones and autacoids that influence DVR vasomotion, however, suggests that DVR have evolved to optimize the functions of the renal medulla.


Asunto(s)
Médula Renal/irrigación sanguínea , Animales , Médula Renal/fisiología , Microcirculación , Circulación Renal
7.
Am J Physiol Heart Circ Physiol ; 278(4): H1248-55, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10749721

RESUMEN

The intracellular calcium ([Ca(2+)](i)) response of outer medullary descending vasa recta (OMDVR) endothelia to ANG II was examined in fura 2-loaded vessels. Abluminal ANG II (10(-8) M) caused [Ca(2+)](i) to fall in proportion to the resting [Ca(2+)](i) (r = 0. 82) of the endothelium. ANG II (10(-8) M) also inhibited both phases of the [Ca(2+)](i) response generated by bradykinin (BK, 10(-7) M), 835 +/- 201 versus 159 +/- 30 nM (peak phase) and 169 +/- 26 versus 103 +/- 14 nM (plateau phase) (means +/- SE). Luminal ANG II reduced BK (10(-7) M)-stimulated plateau [Ca(2+)](i) from 180 +/- 40 to 134 +/- 22 nM without causing vasoconstriction. Abluminal ANG II added to the bath after luminal application further reduced [Ca(2+)](i) to 113 +/- 9 nM and constricted the vessels. After thapsigargin (TG) pretreatment, ANG II (10(-8) M) caused [Ca(2+)](i) to fall from 352 +/- 149 to 105 +/- 37 nM. This effect occurred at a threshold ANG II concentration of 10(-10) M and was maximal at 10(-8) M. ANG II inhibited both the rate of Ca(2+) entry into [Ca(2+)](i)-depleted endothelia and the rate of Mn(2+) entry into [Ca(2+)](i)-replete endothelia. In contrast, ANG II raised [Ca(2+)](i) in the medullary thick ascending limb and outer medullary collecting duct, increasing [Ca(2+)](i) from baselines of 99 +/- 33 and 53 +/- 11 to peaks of 200 +/- 47 and 65 +/- 11 nM, respectively. We conclude that OMDVR endothelia are unlikely to be the source of ANG II-stimulated NO production in the medulla but that interbundle nephrons might release Ca(2+)-dependent vasodilators to modulate vasomotor tone in vascular bundles.


Asunto(s)
Angiotensina II/farmacología , Señalización del Calcio/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Médula Renal/fisiología , Circulación Renal/fisiología , Animales , Bradiquinina/farmacología , Calcio/metabolismo , Quelantes/farmacología , Ácido Egtácico/farmacología , Inhibidores Enzimáticos/farmacología , Colorantes Fluorescentes , Fura-2 , Aparato Yuxtaglomerular/efectos de los fármacos , Aparato Yuxtaglomerular/fisiología , Médula Renal/efectos de los fármacos , Microcirculación/efectos de los fármacos , Microcirculación/fisiología , Nefronas/efectos de los fármacos , Nefronas/fisiología , Óxido Nítrico/metabolismo , Ratas , Ratas Sprague-Dawley , Circulación Renal/efectos de los fármacos , Tapsigargina/farmacología , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología
8.
Am J Physiol Renal Physiol ; 278(2): F257-69, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10662730

RESUMEN

A recent model of volume and solute microvascular exchange in the renal medulla was extended by simulating the deposition of NaCl, urea, and water into the medullary interstitium from the loops of Henle and collecting ducts with generation rates that undergo spatial variation within the inner medullary interstitium. To build an exponential osmolality gradient in the inner medulla, as suggested by Koepsell et al. (H. Koepsell, W. E. A. P. Nicholson, W. Kriz, and H. J. Höhling. Pflügers Arch. 350: 167-184, 1974), the ratio of the interstitial area-weighted generation rate of small solutes to that of water must increase along the corticomedullary axis. We satisfied this condition either by holding the area-weighted generation rate of water constant while increasing that of NaCl and urea or by reducing the input rate of water with medullary depth. The latter case, in particular, yielded higher solute concentrations at the papillary tip. Assuming that the fraction of the filtered load recovered by inner medullary vasa recta for water, NaCl, and urea is 1%, 1%, and 40%, respectively, papillary tip osmolality is 1,470 mosmol/kgH(2)O when urea generation and NaCl generation per unit volume of interstitium increase exponentially and linearly, respectively. The inner medullary osmolar gradient also increases further when 1) medullary blood flow is reduced, 2) hydraulic conductivity of descending vasa recta (DVR) is lowered, and 3) vasa recta permeability to NaCl and urea is maximized. The coupling between water and small solute transport, resulting from aquaporin-1-mediated transcellular flux in DVR, also enhances tip osmolality.


Asunto(s)
Agua Corporal/metabolismo , Espacio Extracelular/fisiología , Médula Renal/fisiología , Túbulos Renales Colectores/fisiología , Modelos Biológicos , Sodio/sangre , Urea/metabolismo , Animales , Médula Renal/irrigación sanguínea , Túbulos Renales Colectores/irrigación sanguínea , Microcirculación/fisiología , Concentración Osmolar , Ratas
9.
J Clin Invest ; 105(2): 215-22, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10642600

RESUMEN

Deletion of AQP1 in mice results in diminished urinary concentrating ability, possibly related to reduced NaCl- and urea gradient-driven water transport across the outer medullary descending vasa recta (OMDVR). To quantify the role of AQP1 in OMDVR water transport, we measured osmotically driven water permeability in vitro in microperfused OMDVR from wild-type, AQP1 heterozygous, and AQP1 knockout mice. OMDVR diameters in AQP1(-/-) mice were 1.9-fold greater than in AQP1(+/+) mice. Osmotic water permeability (P(f)) in response to a 200 mM NaCl gradient (bath > lumen) was reduced about 2-fold in AQP1(+/-) mice and by more than 50-fold in AQP1(-/-) mice. P(f) increased from 1015 to 2527 microm/s in AQP1(+/+) mice and from 22 to 1104 microm/s in AQP1(-/-) mice when a raffinose rather than an NaCl gradient was used. This information, together with p-chloromercuribenzenesulfonate inhibition measurements, suggests that nearly all NaCl-driven water transport occurs by a transcellular route through AQP1, whereas raffinose-driven water transport also involves a parallel, AQP1-independent, mercurial-insensitive pathway. Interestingly, urea was also able to drive water movement across the AQP1-independent pathway. Diffusional permeabilities to small hydrophilic solutes were comparable in AQP1(+/+) and AQP1(-/-) mice but higher than those previously measured in rats. In a mathematical model of the medullary microcirculation, deletion of AQP1 resulted in diminished concentrating ability due to enhancement of medullary blood flow, partially accounting for the observed urine-concentrating defect.


Asunto(s)
Acuaporinas/metabolismo , Médula Renal/metabolismo , Cloruro de Sodio/metabolismo , Agua/metabolismo , 4-Cloromercuribencenosulfonato/farmacología , Animales , Acuaporina 1 , Acuaporinas/genética , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Permeabilidad de la Membrana Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Técnicas In Vitro , Inulina/farmacología , Médula Renal/irrigación sanguínea , Médula Renal/citología , Ratones , Ratones Noqueados , Modelos Biológicos , Peso Molecular , Ósmosis/efectos de los fármacos , Ósmosis/fisiología , Perfusión , Rafinosa/farmacología
10.
Clin Exp Pharmacol Physiol ; 25(6): 383-92, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9673811

RESUMEN

1. The microcirculation of the kidney is arranged in a manner that facilitates separation of blood flow to the cortex, outer medulla and inner medulla. 2. Resistance vessels in the renal vascular circuit include arcuate and interlobular arteries, glomerular afferent and efferent arterioles and descending vasa recta. 3. Vasoactive hormones that regulate smooth muscle cells of the renal circulation can originate outside the kidney (e.g. vasopressin), can be generated from nearby regions within the kidney (e.g. kinins, endothelins, adenosine) or they can be synthesized by adjacent endothelial cells (e.g. nitric oxide, prostacyclin, endothelins). 4. Vasoactive hormones released into the renal inner medullary microcirculation may be trapped by countercurrent exchange to act upon descending vasa recta within outer medullary vascular bundles. 5. Countercurrent blood flow within the renal medulla creates a hypoxic environment. Relative control of inner versus outer medullary blood flow may play a role to abrogate the hypoxia that arises from O2 consumption by the thick ascending limb of Henle. 6. Cortical blood flow is autoregulated. In contrast, the extent of autoregulation of medullary blood flow appears to be influenced by the volume status of the animal. Lack of medullary autoregulation during volume expansion may be part of fundamental processes that regulate salt and water excretion.


Asunto(s)
Médula Renal/anatomía & histología , Médula Renal/irrigación sanguínea , Riñón/anatomía & histología , Microcirculación/anatomía & histología , Microcirculación/fisiología , Circulación Renal/fisiología , Animales , Humanos
11.
Am J Physiol ; 274(4): H1202-10, 1998 04.
Artículo en Inglés | MEDLINE | ID: mdl-9575923

RESUMEN

A recent model of volume and solute microcirculatory exchange in the renal medulla based on a single descending vasa rectum (DVR) was extended to account for the varying number of vessels along the corticomedullary axis. The assumption that concentration polarization at the walls of ascending vasa recta (AVR) during volume uptake eliminates transmural oncotic pressure gradients was examined. In this limiting case, small hydrostatic pressure gradients can drive AVR volume uptake if the pressure in the interstitium exceeds that in the AVR lumen. The calculated hydraulic pressure difference across AVR yielding agreement between predicted and measured values of AVR-to-DVR blood flow rate ratios was found to be smaller than the reported maximum pressure difference AVR can sustain. Simulations also confirmed previous conclusions suggesting that the presence of urea transporters in DVR counterbalances that of water channels that would otherwise decrease the efficiency of small solute trapping in the renal medulla.


Asunto(s)
Médula Renal/irrigación sanguínea , Proteínas de Transporte de Membrana , Modelos Biológicos , Agua/metabolismo , Capilares/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Presión Hidrostática , Canales Iónicos/metabolismo , Glicoproteínas de Membrana/metabolismo , Circulación Renal/fisiología , Soluciones/metabolismo , Transportadores de Urea
12.
Am J Physiol ; 274(3): H752-9, 1998 03.
Artículo en Inglés | MEDLINE | ID: mdl-9530185

RESUMEN

Outer medullary descending vasa recta (OMDVR) were dissected from the outer medullary vascular bundles of young rats, perfused in vitro, and loaded with fura 2 for measurement of intracellular calcium concentration ([Ca2+]i) by fluorescent ratio imaging. Fluorescent video images revealed that fura 2 selectively loads into endothelial cells but not pericytes. Bradykinin (BK), at concentrations > 10(-11) M, elicited an increase in [Ca2+]i from baseline values in the range from 50 to 100 nM to peak values of 600-800 nM followed by a sustained plateau of 150-250 nM. The vasopressin V1-receptor agonist [Phe2,Ile3,Orn8]vasopressin constricted OMDVR but yielded no observable [Ca2+]i response, a finding that is consistent with an endothelial cell origin for the fura 2 fluorescent signal. The BK [Ca2+]i response was blocked by the selective BK B2-receptor antagonists D-Arg-[Hyp3,Thi5.8,D-Phe7]BK and D-Arg-[Hyp3,D-Phe7,Leu8]BK but not the B1 antagonist des-Arg9-[Leu8]BK. BK vasodilated microperfused OMDVR that had been preconstricted with 10(-8) M angiotensin II. We conclude that the [Ca2+]i response of OMDVR endothelia can be selectively studied with fura 2, that BK increases endothelial [Ca2+]i via the B2 receptor, and that BK can vasodilate descending vasa recta.


Asunto(s)
Arteriolas/efectos de los fármacos , Bradiquinina/farmacología , Médula Renal/irrigación sanguínea , Angiotensina II/farmacología , Animales , Antagonistas de los Receptores de Bradiquinina , Calcio/metabolismo , Endotelio/metabolismo , Técnicas In Vitro , Calidina/farmacología , Músculo Liso/metabolismo , Ratas , Receptores de Bradiquinina/fisiología , Receptores de Vasopresinas/agonistas , Sistema Vasomotor/efectos de los fármacos
13.
Am J Physiol ; 272(5 Pt 2): F579-86, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9176367

RESUMEN

Molecular sieving of small solutes by outer medullary descending vasa recta (OMDVR). Descending vasa recta (DVR) plasma equilibrates with the medullary interstitium by volume efflux (Jv), as well as by influx of solutes. Jv is driven by transmural osmotic pressure gradients due to small hydrophilic solutes (delta pi s), NaCl and urea. DVR endothelium probably contains a "water-only" pathway most likely mediated by the aquaporin-1 (AQP1) water channel. We measured the ability of microperfused OMDVR to concentrate lumenal 22Na and [3H]raffinose when Jv was driven by transmural NaCl gradients. Collectate-to-perfusate ratios of 2 x 10(6) M(r) fluorescein isothiocyanate-labeled dextran volume marker (RDx), 22Na (RNa), and [3H]raffinose (Rraf) were measured in the absence and presence of Jv. During volume efflux (Jv > 0), RDx was 1.37 +/- 0.31. RNa increased from 0.64 +/- 0.03 when Jv = 0 to 0.82 +/- 0.05 when Jv > 0 and Rraf increased from 0.83 +/- 0.03 to 1.13 +/- 0.05: Mathematical simulations predict RNa and Rraf most accurately when the OMDVR reflection coefficient to the tracers is assigned a value near unity. This indicates that the OMDVR wall contains a pathway for osmotic volume flux that excludes small hydrophilic solutes, a behavior consistent with that of aquaporins.


Asunto(s)
Médula Renal/fisiología , Equilibrio Hidroelectrolítico , Animales , Médula Renal/irrigación sanguínea , Matemática , Modelos Biológicos , Rafinosa/metabolismo , Ratas , Ratas Sprague-Dawley , Circulación Renal , Cloruro de Sodio/metabolismo , Ultrafiltración
14.
Am J Physiol ; 272(5 Pt 2): F587-96, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9176368

RESUMEN

Outer medullary descending vasa recta (OMDVR) were perfused in vitro, and volume efflux was measured by driving water movement with transmural gradients of NaCl or albumin. Consistent with mediation by water channels, p-chloromercuribenzenesulfonic acid (pCMBS) markedly inhibited volume flux induced by NaCl. Dithiothreitol reversed the inhibition, pCMBS did not significantly alter water flux induced by albumin. Osmotic water permeability (Pf) of the pCMBS-sensitive pathway of glutaraldehyde-fixed and nonfixed OMDVR was 1,102 +/- 449 and 1,257 +/- 718 microns/s (means +/- SD), respectively. pCMBS reduced Pf to near zero, whereas diffusional water permeability in the same vessels was only slightly inhibited. Immunoreactive aquaporin-1 (AQP1) measured by enzyme-linked immunosorbent assay in collagenase-treated and untreated OMDVR was 5.2 +/- 1.0 and 4.2 +/- 0.4 fmol/mm, respectively, values that account well for the experimental Pf. We conclude that OMDVR water flux driven by NaCl gradients is most likely mediated by the AQP1 water channel and that NaCl and urea gradients drive water efflux in vivo by this route.


Asunto(s)
Acuaporinas , Canales Iónicos/fisiología , Médula Renal/fisiología , Cloruro de Sodio/metabolismo , Equilibrio Hidroelectrolítico , 4-Cloromercuribencenosulfonato/farmacología , Animales , Acuaporina 1 , Transporte Biológico , Presión Hidrostática , Técnicas In Vitro , Matemática , Modelos Biológicos , Rafinosa/metabolismo , Ratas , Ratas Sprague-Dawley , Agua/metabolismo
15.
Am J Physiol ; 272(4 Pt 2): F505-14, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9140052

RESUMEN

A new theoretical model describing the exchange of water and solutes between the renal medullary interstitium and the microcirculation was developed to account for the presence of water channels and urea transporters, both of which were recently identified in the descending vasa recta (DVR) of the renal medulla. Small solutes, which are excluded from the water channels, are freely exchanged through a parallel pathway shared with water. The transcapillary concentration gradients of sodium and urea across the water channels induce water efflux from DVR, whereas classic Starling forces across the shared pathway favor volume uptake by DVR. Because small solute concentration gradients are large in the inner medulla, the model predicts net water removal from DVR, in agreement with experimental observations. The descending and ascending vasa recta (AVR) function as a countercurrent exchanger, the efficiency of which is inversely related to the net amount of solute taken up by the medullary microcirculation. Our results indicate that net solute removal from the medulla is governed by convective uptake into AVR and thus depends predominantly on the parameters affecting AVR transcapillary volume flux. The simulations also suggest that the urea transporter significantly enhances the exchange of both sodium and urea and might serve to abrogate a reduction in exchanger efficiency imparted by water channels.


Asunto(s)
Arteriolas/fisiología , Médula Renal/irrigación sanguínea , Microcirculación , Modelos Biológicos , Circulación Renal , Animales , Transporte Biológico , Agua Corporal/fisiología , Capilares/fisiología , Difusión , Canales Iónicos/fisiología , Modelos Teóricos , Canales de Sodio/fisiología , Urea/metabolismo
16.
Am J Physiol ; 272(3 Pt 2): H1231-8, 1997 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9087597

RESUMEN

Adenosine has a multitude of functions in the kidney, including vasoregulation of the renal vasculature. The actions of adenosine are mediated by its binding to specific receptors. Four adenosine-receptor subtypes have been cloned and sequenced, the A1, A2a, A2b, and the A3. In this study, the expression of individual adenosine-receptor subtype RNAs in outer medullary descending vasa recta (OMDVR) was investigated. Total RNA isolated from the outer medulla and microdissected, permeabilized OMDVR were subjected to reverse transcription-polymerase chain reaction (RT-PCR) with primers specific for each of the adenosine-receptor subtypes. Subtype-specific probes were used to verify the PCR products by Southern hybridization. Our studies, performed in triplicate on five different rats, indicate the presence of A1, A2a, and A2b adenosine-receptor subtype mRNAs. These products were not attributable to extraneous RNA contamination from other tissue sources, nor did they result from genomic DNA amplification. These data are consistent with pharmacological evaluations, favor A1, A2a, and A2b adenosine-receptor subtype expression in OMDVR, and support a role for adenosine in the regulation of medullary blood flow.


Asunto(s)
Arteriolas/metabolismo , Médula Renal/irrigación sanguínea , Receptores Purinérgicos P1/biosíntesis , Transcripción Genética , Animales , Southern Blotting , Encéfalo/metabolismo , Cartilla de ADN , Sondas de ADN , Femenino , Médula Renal/metabolismo , Masculino , Reacción en Cadena de la Polimerasa/métodos , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P1/fisiología , Circulación Renal , Testículo/metabolismo
17.
Am J Physiol ; 272(1 Pt 2): H392-400, 1997 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9038961

RESUMEN

Water permeates many microvessel walls via a pathway shared with small hydrophilic solutes and also via an exclusive water pathway. In outer medullary descending vasa recta (OMDVR), the relationship between diffusional permeabilities to water and sodium indicates the existence of an exclusive water pathway and suggests that of a shared pathway. We investigated the latter possibility by estimating hydraulic permeability (Lp) and diffusional permeability to [3H]raffinose (P(raf)) in isolated, perfused OMDVR. The product of hydraulic permeability and osmotic reflexion coefficient of albumin (Lp sigma a) was 1.56 +/- 0.19 x 10(-6) cm.s-1.mmHg-1 (n = 28), calculated from transmural volume fluxes induced by perfusate-to-bath differences in albumin oncotic pressure (delta IIa). P(raf) in the same vessels was 40.1 +/- 7.5 x 10(-5) cm/s when delta IIa was zero. In separate experiments, sigma a was at least 0.89 +/- 0.10 (n = 17). Lp sigma a correlates with P(raf), indicating that OMDVR contain a shared pathway for convection driven by delta IIa and for diffusion of small hydrophilic solutes.


Asunto(s)
Permeabilidad Capilar , Médula Renal/irrigación sanguínea , Animales , Arteriolas/metabolismo , Dextranos , Difusión , Fluoresceína-5-Isotiocianato/análogos & derivados , Técnicas In Vitro , Perfusión , Rafinosa/farmacocinética , Ratas , Ratas Sprague-Dawley , Albúmina Sérica/metabolismo
18.
Am J Physiol ; 272(1 Pt 2): F147-51, 1997 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9039061

RESUMEN

Arginine vasopressin (AVP) can selectively decrease blood flow in the renal medulla, but the sites of vasoconstriction are uncertain. We have examined the effects of vasopressin-receptor agonists and antagonists on the diameters of outer medullary descending vasa recta (OMDVR), isolated and perfused in vitro. AVP can constrict OMDVR, apparently via V1a-receptors. Ablumenal AVP (10(-10)-10(-6)M) or the selective V1a-receptor agonist [Phe2, Ile3, Orn8]-vasopressin (PO-VT, 10(-8) M) constricted OMDVR focally and (at higher AVP concentrations) transiently. The V1b agonist ideamino-Cys1,D-3-(pyridyl)Ala2,Arg8)vasopressin (DP-VP; 10(-8) M) and the V2 agonist [deamino-Cys1, D-Arg8]vasopressin (DDAVP; 10(-8) M) did not constrict OMDVR. The V1a antagonist [d(CH2)5(1), O-Me-Tyr2,Arg8]vasopressin (CTM-VP, 10(-10) 10(-8) M) inhibited vasoconstriction by AVP 10(-9 M), whereas the V2 antagonist [d(CH2)5(1), D-Ile2,Ile4 Arg8]vasopressin (II-VP) at low concentration (10(-10) M) did not. V2 stimulation seems to inhibit V1a constriction of OMDVR. DDAVP prevented constriction by PO-VT (10(-8) M) applied at the same time and dilated OMDVR preconstricted with PO-VT.


Asunto(s)
Arginina Vasopresina/farmacología , Circulación Renal/efectos de los fármacos , Vasoconstricción , Vasoconstrictores/farmacología , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas , Arteriolas/efectos de los fármacos , Técnicas In Vitro , Médula Renal/irrigación sanguínea , Perfusión , Ratas , Ratas Sprague-Dawley , Receptores de Vasopresinas/agonistas , Receptores de Vasopresinas/fisiología , Vasoconstricción/efectos de los fármacos
19.
J Clin Invest ; 98(1): 18-23, 1996 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-8690791

RESUMEN

Adenosine is generated within the renal medulla under hypoxic conditions and is known to induce net vasoconstriction within the renal cortex while increasing medullary blood flow and oxygenation. To test the hypothesis that vasoconstriction of outer medullary descending vasa recta (OMDVR) is modulated by adenosine, we examined the effects of adenosine and adenosine Al and A2 receptor subtype agonists on in vitro perfused control and preconstricted rat OMDVR. Constriction with angiotensin II (ANG II, 10(-9) M) was attenuated by adenosine in a concentration-dependent manner (EC50 = 2.0 x 10(-7)M, P < 0.05). Similarly, an adenosine A2 agonist (CGS-21680, 10(-7) M), but not an adenosine Al agonist (cyclohexyladenosine, 10(-6) M), attenuated ANG II-induced vasoconstriction. Under control conditions, ablumenal application of adenosine (10(-12) to 10(-5) M) elicited a biphasic response. Additionally, cyclohexyladenosine (10(-6) M) caused vasoconstriction and CGS-21680 (10(-6) M) had no effect on untreated vessels. Finally, an influence of ANG II receptor stimulation on adenosine Al receptor-mediated vasoconstriction could not be shown. These data suggest that OMDVR possess both Al and A2 adenosine receptors and that they mediate constriction and dilatation, respectively. We conclude that adenosine is a potent modulator of OMDVR vasomotor tone and that its net effect is dependent upon local concentrations.


Asunto(s)
Adenosina/farmacología , Hemodinámica/efectos de los fármacos , Médula Renal/efectos de los fármacos , Tono Muscular/efectos de los fármacos , Flujo Sanguíneo Regional/efectos de los fármacos , Vasodilatadores/farmacología , Adenosina/análogos & derivados , Angiotensina II/farmacología , Animales , Femenino , Médula Renal/irrigación sanguínea , Fenetilaminas/farmacología , Agonistas del Receptor Purinérgico P1 , Ratas , Ratas Sprague-Dawley , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos
20.
Am J Physiol ; 269(2 Pt 2): H710-6, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-7653636

RESUMEN

To examine their responsiveness to norepinephrine (NE) and acetylcholine (ACh), outer medullary descending vasa recta (OMDVR) have been dissected from vascular bundles of the rat and perfused in vitro. Abluminal application of NE produced graded vasoconstriction in a concentration range of 10(-9)-10(-6) M. When applied with NE, ACh at concentrations of 10(-8)-10(-5) M dilated NE-preconstricted OMDVR. In contrast, ACh applied in the absence of NE caused vasoconstriction. ACh-induced vasodilation was blocked by addition of the nitric oxide synthase inhibitor N omega-nitro-L-arginine (L-NNA, 2 x 10(-4) M). L-NNA in the absence of ACh enhanced NE-induced vasoconstriction. Supraphysiological (10(-3) M) L-arginine (L-Arg) reversed the effects of L-NNA, and abluminal application of L-NNA alone resulted in OMDVR vasoconstriction. At concentrations of 10(-6)-10(-3) M, abluminal application of L-Arg produced graded vasodilation of NE-constricted OMDVR. These results suggest that adrenergic and cholinergic innervation could influence OMDVR vasomotor tone to modulate total and regional blood flow to the renal medulla. The data also favor a role for the activity of constitutively expressed nitric oxide synthase to modulate OMDVR vasoactivity.


Asunto(s)
Acetilcolina/farmacología , Médula Renal/irrigación sanguínea , Norepinefrina/farmacología , Circulación Renal/efectos de los fármacos , Animales , Arginina/análogos & derivados , Arginina/farmacología , Óxido Nítrico/fisiología , Nitroarginina , Perfusión , Ratas , Ratas Sprague-Dawley , Vasoconstricción/fisiología , Sistema Vasomotor/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...