Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10420, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38710730

RESUMEN

In the mouse embryo, the transition from the preimplantation to the postimplantation epiblast is governed by changes in the gene regulatory network (GRN) that lead to transcriptional, epigenetic, and functional changes. This transition can be faithfully recapitulated in vitro by the differentiation of mouse embryonic stem cells (mESCs) to epiblast-like cells (EpiLCs), that reside in naïve and formative states of pluripotency, respectively. However, the GRN that drives this conversion is not fully elucidated. Here we demonstrate that the transcription factor OCT6 is a key driver of this process. Firstly, we show that Oct6 is not expressed in mESCs but is rapidly induced as cells exit the naïve pluripotent state. By deleting Oct6 in mESCs, we find that knockout cells fail to acquire the typical morphological changes associated with the formative state when induced to differentiate. Additionally, the key naïve pluripotency TFs Nanog, Klf2, Nr5a2, Prdm14, and Esrrb were expressed at higher levels than in wild-type cells, indicating an incomplete dismantling of the naïve pluripotency GRN. Conversely, premature expression of Oct6 in naïve cells triggered a rapid morphological transformation mirroring differentiation, that was accompanied by the upregulation of the endogenous Oct6 as well as the formative genes Sox3, Zic2/3, Foxp1, Dnmt3A and FGF5. Strikingly, we found that OCT6 represses Nanog in a bistable manner and that this regulation is at the transcriptional level. Moreover, our findings also reveal that Oct6 is repressed by NANOG. Collectively, our results establish OCT6 as a key TF in the dissolution of the naïve pluripotent state and support a model where Oct6 and Nanog form a double negative feedback loop which could act as an important toggle mediating the transition to the formative state.


Asunto(s)
Diferenciación Celular , Redes Reguladoras de Genes , Células Madre Embrionarias de Ratones , Proteína Homeótica Nanog , Animales , Ratones , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Diferenciación Celular/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Regulación del Desarrollo de la Expresión Génica , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Estratos Germinativos/metabolismo , Estratos Germinativos/citología , Ratones Noqueados
2.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397024

RESUMEN

Wound healing after skin injury is a complex process, particularly in equines where leg wounds are prevalent and their repair is complicated due to the anatomical characteristics. Conventional treatments are not effective enough. The umbilical cord offers an unlimited source of adult mesenchymal stem cells (ucMSCs) from Wharton's jelly tissue. The present study aims to demonstrate the safety and therapeutic potential of the allogeneic use of equine ucMSCs (e-ucMSCs) in the healing of severe equine leg wounds. The methods employed were the isolation, culture and expansion of e-ucMSCs. Flow cytometry and a PCR assay were used for cell characterization. This study included an immunomodulation assay, a murine pre-clinical trial and the first phase of an equine clinical trial. Our results showed that e-ucMSCs express a functional HLA-G homolog, EQMHCB2. In the immunomodulation assay, the e-ucMSCs inhibited the proliferation of activated equine peripheral blood mononuclear cells (e-PBMCs). In the murine pre-clinical trial, e-ucMSCs reduced healing time by 50%. In the equine clinical trial, the injection of e-ucMSCs into severe leg lesions improved the closure time and quality of the tissues involved, regenerating them without fibrous tissue scar formation. In conclusion, the results of this study suggest that e-ucMSCs can be used allogeneically for wound healing by creating a tolerogenic environment.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Animales , Caballos , Ratones , Leucocitos Mononucleares , Cordón Umbilical , Cicatriz
3.
Sci Rep ; 11(1): 22158, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34773056

RESUMEN

Cancer immunotherapies based mainly on the blockade of immune-checkpoint (IC) molecules by anti-IC antibodies offer new alternatives for treatment in oncological diseases. However, a considerable proportion of patients remain unresponsive to them. Hence, the development of novel clinical immunotherapeutic approaches and/or targets are crucial.W In this context, targeting the immune-checkpoint HLA-G/ILT2/ILT4 has caused great interest since it is abnormally expressed in several malignancies generating a tolerogenic microenvironment. Here, we used CRISPR/Cas9 gene editing to block the HLA-G expression in two tumor cell lines expressing HLA-G, including a renal cell carcinoma (RCC7) and a choriocarcinoma (JEG-3). Different sgRNA/Cas9 plasmids targeting HLA-G exon 1 and 2 were transfected in both cell lines. Downregulation of HLA-G was reached to different degrees, including complete silencing. Most importantly, HLA-G - cells triggered a higher in vitro response of immune cells with respect to HLA-G + wild type cells. Altogether, we demonstrated for the first time the HLA-G downregulation through gene editing. We propose this approach as a first step to develop novel clinical immunotherapeutic approaches in cancer.


Asunto(s)
Edición Génica/métodos , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Antígenos HLA-G/inmunología , Humanos , Inmunoterapia/métodos , ARN Guía de Kinetoplastida , Transfección
4.
Cell Transplant ; 30: 963689721993774, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33975446

RESUMEN

In normal physiological conditions, restoration of a functional epidermal barrier is highly efficient; nevertheless, when it fails, one of the main consequences is a chronic ulcerative skin defect, one of the most frequently recognized complications of diabetes. Most of these chronic venous ulcers do not heal with conventional treatment, leading to the appearance of infections and complications in the patient. Treatments based on the use of autologous mesenchymal stem cells (MSC) have been successful; however, its implementation entails complications. The umbilical cord offers an unlimited source of adult MSC (ucMSC) from the Wharton's jelly tissue with the same relevant features for clinical applicability and avoiding difficulties. It has recently been characterized by one specific subpopulation derived from ucMSC, the differentiated mesenchymal cells (DMCs). This subpopulation expresses the human leukocyte antigen-G (HLA-G) molecule, a strong immunosuppressive checkpoint, and vascular endothelial growth factor (VEGF), the most potent angiogenic factor. Considering the importance of developing a more effective therapy for wound treatment, especially ulcerative skin lesions, we analyzed DMC safety, efficacy, and therapeutic potential. By immunohistochemistry, umbilical cords HLA-G and VEGF positive were selected. Flow cytometry revealed that 90% of the DMC subpopulation are HLA-G+, CD44+, CD73+, CD29+, CD105+, CD90+, and HLA-DR-. Reverse transcription-polymerase chain reaction revealed the expression of HLA-G in all of DMC subpopulations. Upon co-culture with the DMC, peripheral blood mononuclear cell proliferation was inhibited by 50%. In a xenograft transplantation assay, DMC improved wound healing with no signs of rejection of the transplanted cells in immunocompetent mice. This study confirms that HLA-G allows allogeneic cell transplantation, and VEGF is fundamental for the restoration of the failure in blood supply. DMC population has positive effects on wound healing by promoting local angiogenesis in skin lesions. DMC could play a very important role in regenerative medicine and could be a novel allogeneic cell-therapeutic tool for wound healing.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Trasplante Homólogo/métodos , Cordón Umbilical/metabolismo , Cicatrización de Heridas/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones
5.
BMC Cancer ; 20(1): 624, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620162

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC), the most aggressive renal cancer, is characterized by early lymph node metastases and bad prognosis. Most therapies targeting advanced or metastatic ccRCC are based, as first-line treatment, on the administration of the vascular endothelial growth factor (VEGF) neutralizing antibody termed Bevacizumab. Despite proven benefits, the expected results were not obtained for the majority of patients. The possibility that an intricate interplay between angiogenesis and immune-checkpoints might exist lead us to evaluate tumor angiogenesis, by means of VEGF expression together with the immune checkpoint HLA-G/ILT4. METHODS: Tumor specimens were obtained from patients from two separate cohorts: One from "Evita Pueblo" Hospital from Berazategui, (Buenos Aires, Argentina) and the second includes patients surgically operated at the Urology Department of Saint-Louis Hospital (Paris, France) with a confirmed ccRCC diagnosis. Immunohistochemistry was performed with specific antibodies directed against HLA-G, VEGF-A, VEGF-C, D240, CD34, ILT4 and Ca-IX. In addition, gene expression levels were measured in a cell line derived from a ccRCC patient by semi-quantitative RT-PCR. RESULTS: Our results show that the highly vascularized tumors of ccRCC patients express high levels of VEGF and the immune-checkpoint HLA-G. In addition, ILT4, one of the HLA-G receptors, was detected on macrophages surrounding tumor cells, suggesting the generation of an immune-tolerant microenvironment that might favor tumorigenesis. Notably, RT-qPCR analysis provided the first evidence on the transcriptional relationship between HLA-G/ILT4 and the VEGF family. Namely, in the presence of HLA-G or ILT4, the levels of VEGF-A are diminished whereas those of VEGF-C are increased. CONCLUSIONS: In an effort to find new therapeutic molecules and fight against metastasis dissemination associated with the poor survival rates of ccRCC patients, these findings provide the rationale for co-targeting angiogenesis and the immune checkpoint HLA-G.


Asunto(s)
Carcinoma de Células Renales/genética , Antígenos HLA-G/metabolismo , Neoplasias Renales/genética , Glicoproteínas de Membrana/metabolismo , Neovascularización Patológica/genética , Receptores Inmunológicos/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Adulto , Anciano , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/terapia , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Riñón/irrigación sanguínea , Riñón/patología , Riñón/cirugía , Neoplasias Renales/inmunología , Neoplasias Renales/mortalidad , Neoplasias Renales/terapia , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Persona de Mediana Edad , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Nefrectomía , Receptores Inmunológicos/antagonistas & inhibidores , Estudios Retrospectivos , Tasa de Supervivencia , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
6.
Cancer Immunol Immunother ; 69(7): 1237-1252, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32166404

RESUMEN

Clear cell renal cell carcinoma (ccRCC) constitutes the most common renal cell carcinoma subtype and has long been recognized as an immunogenic cancer. As such, significant attention has been directed toward optimizing immune-checkpoints (IC)-based therapies. Despite proven benefits, a substantial number of patients remain unresponsive to treatment, suggesting that yet unreported, immunosuppressive mechanisms coexist within tumors and their microenvironment. Here, we comprehensively analyzed and ranked forty-four immune-checkpoints expressed in ccRCC on the basis of in-depth analysis of RNAseq data collected from the TCGA database and advanced statistical methods designed to obtain the group of checkpoints that best discriminates tumor from healthy tissues. Immunohistochemistry and flow cytometry confirmed and enlarged the bioinformatics results. In particular, by using the recursive feature elimination method, we show that HLA-G, B7H3, PDL-1 and ILT2 are the most relevant genes that characterize ccRCC. Notably, ILT2 expression was detected for the first time on tumor cells. The levels of other ligand-receptor pairs such as CD70:CD27; 4-1BB:4-1BBL; CD40:CD40L; CD86:CTLA4; MHC-II:Lag3; CD200:CD200R; CD244:CD48 were also found highly expressed in tumors compared to adjacent non-tumor tissues. Collectively, our approach provides a comprehensible classification of forty-four IC expressed in ccRCC, some of which were never reported before to be co-expressed in ccRCC. In addition, the algorithms used allowed identifying the most relevant group that best discriminates tumor from healthy tissues. The data can potentially assist on the choice of valuable immune-therapy targets which hold potential for the development of more effective anti-tumor treatments.


Asunto(s)
Antígenos CD/inmunología , Biomarcadores de Tumor/inmunología , Carcinoma de Células Renales/inmunología , Antígenos HLA-G/inmunología , Neoplasias Renales/inmunología , Receptor Leucocitario Tipo Inmunoglobulina B1/inmunología , Glicoproteínas de Membrana/inmunología , Receptores Inmunológicos/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Renales/patología , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA