RESUMEN
Many proteins in higher eukaryotes, especially those with crucial functions, have multiple isoforms with redundant roles providing protection against potential functional deficiencies in one isoform. However, these isoforms can also have some unique roles. Protein kinase B, also known as Akt, is one such protein that has three isoforms encoded on different genes. Due to high sequence similarity and the general lack of specific reagents, most studies on Akt generalize their findings and do not distinguish between the isoforms. Using an established chemical genetic strategy and a set of known Akt substrates, this work explores substrate specificity of Akt isoforms under steady state conditions in two commonly used cell lines. This strategy can be applied to study any Akt isoform-specific substrates of interest in any cell line of choice as long as the cell line can be transfected.
Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-akt/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Línea CelularRESUMEN
Metal-organic framework (MOF)-based membranes have been widely used in gas and liquid separation due to their porous structures and tunable compositions. Depending on the guest components, heterostructured MOFs can exhibit multiple functions. In the present work, we report a facile and rapid preparation of zeolitic imidazolate framework-8 (ZIF-8) and silver nanoparticle incorporated ZIF-8 (Ag/ZIF-8)-based membranes on stainless-steel mesh (SSM) through a "green" electrodeposition method. The SSM was first coated with a Zn-plated layer which contains mainly zinc hydroxide nitrate (Zn5(OH)8(NO3)2·2H2O) with a "leaf-like" morphology, providing anchoring points for the deposition of ZIF-8 and Ag/ZIF-8. It takes only 10 min to prepare a uniform coating of Zn5(OH)8(NO3)2·2H2O in aqueous conditions without the use of a strong base; this is by far the most efficient way of making zinc hydroxide nitrate nanocrystals. Following a similar electrodeposition approach, ZIF-8 and Ag/ZIF-8-coated SSM can be prepared within 20 min by applying a small current. The encapsulation of Ag does not alter the chemical composition nor the crystal structure of ZIF-8. The resulting ZIF-8 and Ag/ZIF-8-coated SSM have been tested for their effectiveness for rhodamine B dye removal in a fast vacuum filtration setting. Additionally, growth of E. coli was significantly inhibited after overnight incubation with Ag/ZIF-8-coated SSM. Overall, we demonstrate a fast synthesis procedure to make ZIF-8 and Ag/ZIF-8-coated SSM membranes for organic dye removal with excellent antimicrobial activity.