Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiome ; 12(1): 18, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310301

RESUMEN

BACKGROUND: The widespread availability of antiretroviral therapy (ART) has dramatically reduced mortality and improved life expectancy for people living with HIV (PLWH). However, even with HIV-1 suppression, chronic immune activation and elevated inflammation persist and have been linked to a pro-inflammatory gut microbiome composition and compromised intestinal barrier integrity. PLWH in urban versus rural areas of sub-Saharan Africa experience differences in environmental factors that may impact the gut microbiome and immune system, in response to ART, yet this has not previously been investigated in these groups. To address this, we measured T cell activation/exhaustion/trafficking markers, plasma inflammatory markers, and fecal microbiome composition in PLWH and healthy participants recruited from an urban clinic in the city of Harare, Zimbabwe, and a district hospital that services surrounding rural villages. PLWH were either ART naïve at baseline and sampled again after 24 weeks of first-line ART and the antibiotic cotrimoxazole or were ART-experienced at both timepoints. RESULTS: Although expected reductions in the inflammatory marker IL-6, T-cell activation, and exhaustion were observed with ART-induced viral suppression, these changes were much more pronounced in the urban versus the rural area. Gut microbiome composition was the most highly altered from healthy controls in ART experienced PLWH, and characterized by both reduced alpha diversity and altered composition. However, gut microbiome composition showed a pronounced relationship with T cell activation and exhaustion in ART-naïve PLWH, suggesting a particularly significant role for the gut microbiome in disease progression in uncontrolled infection. Elevated immune exhaustion after 24 weeks of ART did correlate with both living in the rural location and a more Prevotella-rich/Bacteroides-poor microbiome type, suggesting a potential role for rural-associated microbiome differences or their co-variates in the muted improvements in immune exhaustion in the rural area. CONCLUSION: Successful ART was less effective at reducing gut microbiome-associated inflammation and T cell activation in PLWH in rural versus urban Zimbabwe, suggesting that individuals on ART in rural areas of Zimbabwe may be more vulnerable to co-morbidity related to sustained immune dysfunction in treated infection. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por VIH , Humanos , Zimbabwe , Antirretrovirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Inflamación
4.
Microb Ecol ; 85(4): 1620-1629, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35596750

RESUMEN

Bacterial zwitterionic capsular polysaccharides (ZPS), such as polysaccharide A (PSA) of the intestinal commensal Bacteroides fragilis, have been shown to modulate T cells, including inducing anti-inflammatory IL-10-secreting T regulatory cells (Tregs). We previously used a genomic screen to identify diverse host-associated bacteria with the predicted genetic capacity to produce ZPSs related to PSA of B. fragilis and hypothesized that genetic disruption (KO) of a key functional gene within these operons would reduce the anti-inflammatory activity of these bacteria. We found that ZPS-KO bacteria in two common gut commensals, Bacteroides uniformis and Bacteroides cellulosilyticus, had a reduced ability to induce Tregs and IL-10 in stimulations of human peripheral blood mononuclear cells (PBMCs). Additionally, we found that macrophage stimulated with either wildtype B. fragilis or B. uniformis produced significantly more IL-10 than KOs, indicating a potentially novel function of ZPS of shifting the cytokine response in macrophages to a more anti-inflammatory state. These findings support the hypothesis that these related ZPS may represent a shared strategy to modulate host immune responses.


Asunto(s)
Interleucina-10 , Leucocitos Mononucleares , Humanos , Interleucina-10/genética , Polisacáridos Bacterianos , Bacteroides fragilis/genética , Antiinflamatorios , Bacterias
5.
Front Immunol ; 13: 988125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36131937

RESUMEN

Double negative (DN) B cells (CD27-IgD-) comprise a heterogenous population of DN1, DN2, and the recently described DN3 and DN4 subsets. In autoimmune disease, DN2 cells are reported to be precursors to autoreactive antibody secreting cells and expansion of DN2 cells is linked to elevated interferon levels. Severe SARS-CoV-2 infection is characterized by elevated systemic levels of pro-inflammatory cytokines and serum autoantibodies and expansion of the DN2 subset in severe SARS-CoV-2 infection has been reported. However, the activation status, functional capacity and contribution to virally-induced autoantibody production by DN subsets is not established. Here, we validate the finding that severe SARS-CoV-2 infection is associated with a reduction in the frequency of DN1 cells coinciding with an increase in the frequency of DN2 and DN3 cells. We further demonstrate that with severe viral infection DN subsets are at a heightened level of activation, display changes in immunoglobulin class isotype frequency and have functional BCR signaling. Increases in overall systemic inflammation (CRP), as well as specific pro-inflammatory cytokines (TNFα, IL-6, IFNγ, IL-1ß), significantly correlate with the skewing of DN1, DN2 and DN3 subsets during severe SARS-CoV-2 infection. Importantly, the reduction in DN1 cell frequency and expansion of the DN3 population during severe infection significantly correlates with increased levels of serum autoantibodies. Thus, systemic inflammation during SARS-CoV-2 infection drives changes in Double Negative subset frequency, likely impacting their contribution to generation of autoreactive antibodies.


Asunto(s)
COVID-19 , Factor de Necrosis Tumoral alfa , Autoanticuerpos , Linfocitos B , Humanos , Inmunoglobulina D , Isotipos de Inmunoglobulinas , Inflamación , Interferones , Interleucina-6 , SARS-CoV-2
6.
PLoS Pathog ; 18(5): e1010359, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617421

RESUMEN

As of January 2022, at least 60 million individuals are estimated to develop post-acute sequelae of SARS-CoV-2 (PASC) after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While elevated levels of SARS-CoV-2-specific T cells have been observed in non-specific PASC, little is known about their impact on pulmonary function which is compromised in the majority of these individuals. This study compares frequencies of SARS-CoV-2-specific T cells and inflammatory markers with lung function in participants with pulmonary PASC and resolved COVID-19 (RC). Compared to RC, participants with respiratory PASC had between 6- and 105-fold higher frequencies of IFN-γ- and TNF-α-producing SARS-CoV-2-specific CD4+ and CD8+ T cells in peripheral blood, and elevated levels of plasma CRP and IL-6. Importantly, in PASC participants the frequency of TNF-α-producing SARS-CoV-2-specific CD4+ and CD8+ T cells, which exhibited the highest levels of Ki67 indicating they were activity dividing, correlated positively with plasma IL-6 and negatively with measures of lung function, including forced expiratory volume in one second (FEV1), while increased frequencies of IFN-γ-producing SARS-CoV-2-specific T cells associated with prolonged dyspnea. Statistical analyses stratified by age, number of comorbidities and hospitalization status demonstrated that none of these factors affect differences in the frequency of SARS-CoV-2 T cells and plasma IL-6 levels measured between PASC and RC cohorts. Taken together, these findings demonstrate elevated frequencies of SARS-CoV-2-specific T cells in individuals with pulmonary PASC are associated with increased systemic inflammation and decreased lung function, suggesting that SARS-CoV-2-specific T cells contribute to lingering pulmonary symptoms. These findings also provide mechanistic insight on the pathophysiology of PASC that can inform development of potential treatments to reduce symptom burden.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inflamación , Interleucina-6 , Pulmón , Factor de Necrosis Tumoral alfa
7.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35420627

RESUMEN

Severe SARS-CoV-2 infection is associated with strong inflammation and autoantibody production against diverse self-antigens, suggesting a system-wide defect in B cell tolerance. BND cells are a B cell subset in healthy individuals harboring autoreactive but anergic B lymphocytes. In vitro evidence suggests inflammatory stimuli can breach peripheral B cell tolerance in this subset. We asked whether SARS-CoV-2-associated inflammation impairs BND cell peripheral tolerance. To address this, PBMCs and plasma were collected from healthy controls, individuals immunized against SARS-CoV-2, or subjects with convalescent or severe SARS-CoV-2 infection. We demonstrate that BND cells from severely infected individuals are significantly activated, display reduced inhibitory receptor expression, and restored BCR signaling, indicative of a breach in anergy during viral infection, supported by increased levels of autoreactive antibodies. The phenotypic and functional BND cell alterations significantly correlate with increased inflammation in severe SARS-CoV-2 infection. Thus, autoreactive BND cells are released from peripheral tolerance with SARS-CoV-2 infection, likely as a consequence of robust systemic inflammation.


Asunto(s)
COVID-19 , Tolerancia Periférica , Anticuerpos Antivirales , Linfocitos B , Humanos , Inflamación/metabolismo , SARS-CoV-2
8.
Front Immunol ; 13: 1072720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605218

RESUMEN

Introduction: People living with HIV infection (PLWH) exhibit elevated levels of gastrointestinal inflammation. Potential causes of this inflammation include HIV infection and associated immune dysfunction, sexual behaviors among men who have sex with men (MSM) and gut microbiome composition. Methods: To better understand the etiology of gastrointestinal inflammation we examined levels of 28 fecal soluble immune factors (sIFs) and the fecal microbiome in well-defined cohorts of HIV seronegative MSM (MSM-SN), MSM with untreated HIV infection (MSM-HIV) and MSM with HIV on anti-retroviral treatment (MSMART). Additionally, fecal solutes from these participants were used to stimulate T-84 colonic epithelial cells to assess barrier function. Results: Both MSM cohorts with HIV had elevated levels of fecal calprotectin, a clinically relevant marker of GI inflammation, and nine inflammatory fecal sIFs (GM-CSF, ICAM-1, IL-1ß, IL-12/23, IL-15, IL-16, TNF-ß, VCAM-1, and VEGF). Interestingly, four sIFs (GM-CSF, ICAM-1, IL-7 and IL-12/23) were significantly elevated in MSM-SN compared to seronegative male non-MSM. Conversely, IL-22 and IL-13, cytokines beneficial to gut health, were decreased in all MSM with HIV and MSM-SN respectively. Importantly, all of these sIFs significantly correlated with calprotectin, suggesting they play a role in GI inflammation. Principal coordinate analysis revealed clustering of fecal sIFs by MSM status and significant associations with microbiome composition. Additionally, fecal solutes from participants in the MSM-HIV cohort significantly decreased colonic transcellular fluid transport in vitro, compared to non-MSM-SN, and this decrease associated with overall sIF composition and increased concentrations of eight inflammatory sIFs in participants with HIV. Lastly, elevated levels of plasma, sCD14 and sCD163, directly correlated with decreased transcellular transport and microbiome composition respectively, indicating that sIFs and the gut microbiome are associated with, and potentially contribute to, bacterial translocation. Conclusion: Taken together, these data demonstrate that inflammatory sIFs are elevated in MSM, regardless of HIV infection status, and are associated with the gut microbiome and intestinal barrier function.


Asunto(s)
Infecciones por VIH , Microbiota , Minorías Sexuales y de Género , Humanos , Masculino , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Molécula 1 de Adhesión Intercelular , Homosexualidad Masculina , Factores Inmunológicos , Inflamación , Interleucina-12 , Complejo de Antígeno L1 de Leucocito
9.
Gut Microbes ; 13(1): 1997292, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34818131

RESUMEN

Men who have sex with men (MSM), regardless of HIV infection status, have an intestinal microbiome that is compositionally distinct from men who have sex with women (MSW) and women. We recently showed HIV-negative MSM have elevated levels of intestinal CD4+ T cells expressing CCR5, a critical co-receptor for HIV. Whether elevated expression of CCR5 is driven by the altered gut microbiome composition in MSM has not been explored. Here we used in vitro stimulation of gut Lamina Propria Mononuclear Cells (LPMCs) with whole intact microbial cells isolated from stool to demonstrate that fecal bacterial communities (FBCs) from HIV-positive/negative MSM induced higher frequencies of CCR5+ CD4+ T cells compared to FBCs from HIV-negative MSW and women. To identify potential microbial drivers, we related the frequency of CCR5+ CD4+ T cells to the abundance of individual microbial taxa in rectal biopsy of HIV-positive/negative MSM and controls, and Holdemanella biformis was strongly associated with increased frequency of CCR5+ CD4+ T cells. We used in vitro stimulation of gut LPMCs with the type strain of H. biformis, a second strain of H.biformis and an isolate of the closely related Holdemanella porci , cultured from either a HIV-positive or a HIV-negative MSM stool. H. porci elevated the frequency of both CCR5+ CD4+ T cells and the ratio of TNF-α/IL-10 Genomic comparisons of the 3 Holdemanella isolates revealed unique cell wall and capsular components, which may be responsible for their differences in immunogenicity. These findings describe a novel mechanism potentially linking intestinal dysbiosis in MSM to HIV transmission and mucosal pathogenesis.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Firmicutes/inmunología , Microbioma Gastrointestinal/inmunología , Infecciones por VIH/microbiología , Homosexualidad Masculina , Mucosa Intestinal/inmunología , Receptores CCR5/metabolismo , Citocinas/metabolismo , Disbiosis/inmunología , Disbiosis/microbiología , Heces/microbiología , Femenino , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Genoma Bacteriano/genética , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Minorías Sexuales y de Género
12.
Viral Immunol ; 34(8): 504-509, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34227891

RESUMEN

Early results suggest that SARS-CoV-2 vaccines are highly effective for the prevention of COVID-19. Unfortunately, until we can safely, rapidly, and affordably vaccinate enough people to achieve collective immunity, we cannot afford to disregard the benefits of naturally acquired immunity in those, whose prior documented infections have already run their course. As long as the vaccine manufacturing, supply, or administration are limited in capacity, vaccination of individuals with naturally acquired immunity at the expense of others without any immune protection is inherently inequitable, and violates the principle of justice in biomedical ethics. Any preventable disease acquired during the period of such unnecessary delay in vaccination should not be overlooked, as it may and will result in some additional morbidity, mortality, related hospitalizations, and expense. Low vaccine production capacity complicated by inefficiencies in vaccine administration suggests, that vaccinating preferentially those without any prior protection will result in fewer natural infections more rapidly.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunación , Humanos , Inmunidad , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
13.
mSystems ; 6(3)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006628

RESUMEN

Poor metabolic health, characterized by insulin resistance and dyslipidemia, is higher in people living with HIV and has been linked with inflammation, antiretroviral therapy (ART) drugs, and ART-associated lipodystrophy (LD). Metabolic disease is associated with gut microbiome composition outside the context of HIV but has not been deeply explored in HIV infection or in high-risk men who have sex with men (HR-MSM), who have a highly altered gut microbiome composition. Furthermore, the contribution of increased bacterial translocation and associated systemic inflammation that has been described in HIV-positive and HR-MSM individuals has not been explored. We used a multiomic approach to explore relationships between impaired metabolic health, defined using fasting blood markers, gut microbes, immune phenotypes, and diet. Our cohort included ART-treated HIV-positive MSM with or without LD, untreated HIV-positive MSM, and HR-MSM. For HIV-positive MSM on ART, we further explored associations with the plasma metabolome. We found that elevated plasma lipopolysaccharide binding protein (LBP) was the most important predictor of impaired metabolic health and network analysis showed that LBP formed a hub joining correlated microbial and immune predictors of metabolic disease. Taken together, our results suggest the role of inflammatory processes linked with bacterial translocation and interaction with the gut microbiome in metabolic disease among HIV-positive and -negative MSM.IMPORTANCE The gut microbiome in people living with HIV (PLWH) is of interest since chronic infection often results in long-term comorbidities. Metabolic disease is prevalent in PLWH even in well-controlled infection and has been linked with the gut microbiome in previous studies, but little attention has been given to PLWH. Furthermore, integrated analyses that consider gut microbiome, together with diet, systemic immune activation, metabolites, and demographics, have been lacking. In a systems-level analysis of predictors of metabolic disease in PLWH and men who are at high risk of acquiring HIV, we found that increased lipopolysaccharide-binding protein, an inflammatory marker indicative of compromised intestinal barrier function, was associated with worse metabolic health. We also found impaired metabolic health associated with specific dietary components, gut microbes, and host and microbial metabolites. This study lays the framework for mechanistic studies aimed at targeting the microbiome to prevent or treat metabolic endotoxemia in HIV-infected individuals.

14.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649199

RESUMEN

Interleukin-1ß (IL-1ß)-mediated inflammation suppresses antitumor immunity, leading to the generation of a tumor-permissive environment, tumor growth, and progression. Here, we demonstrate that nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in melanoma is linked to IL-1ß production, inflammation, and immunosuppression. Analysis of cancer genome datasets (TCGA and GTEx) revealed greater NLRP3 and IL-1ß expression in cutaneous melanoma samples (n = 469) compared to normal skin (n = 324), with a highly significant correlation between NLRP3 and IL-1ß (P < 0.0001). We show the formation of the NLRP3 inflammasome in biopsies of metastatic melanoma using fluorescent resonance energy transfer analysis for NLRP3 and apoptosis-associated speck-like protein containing a CARD. In vivo, tumor-associated NLRP3/IL-1 signaling induced expansion of myeloid-derived suppressor cells (MDSCs), leading to reduced natural killer and CD8+ T cell activity concomitant with an increased presence of regulatory T (Treg) cells in the primary tumors. Either genetic or pharmacological inhibition of tumor-derived NLRP3 by dapansutrile (OLT1177) was sufficient to reduce MDSCs expansion and to enhance antitumor immunity, resulting in reduced tumor growth. Additionally, we observed that the combination of NLRP3 inhibition and anti-PD-1 treatment significantly increased the antitumor efficacy of the monotherapy by limiting MDSC-mediated T cell suppression and tumor progression. These data show that NLRP3 activation in melanoma cells is a protumor mechanism, which induces MDSCs expansion and immune evasion. We conclude that inhibition of NLRP3 can augment the efficacy of anti-PD-1 therapy.


Asunto(s)
Melanoma Experimental/inmunología , Células Supresoras de Origen Mieloide/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteínas de Neoplasias/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas de Neoplasias/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología
15.
J Immunol ; 205(9): 2447-2455, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32929038

RESUMEN

HIV type 1 is associated with pulmonary dysfunction that is exacerbated by cigarette smoke. Alveolar macrophages (AM) are the most prominent immune cell in the alveolar space. These cells play an important role in clearing inhaled pathogens and regulating the inflammatory environment; however, how HIV infection impacts AM phenotype and function is not well understood, in part because of their autofluorescence and the absence of well-defined surface markers. The main aim of this study was to evaluate the impact of HIV infection on human AM and to compare the effect of smoking on their phenotype and function. Time-of-flight mass cytometry and RNA sequencing were used to characterize macrophages from human bronchoalveolar lavage of HIV-infected and -uninfected smokers and nonsmokers. We found that the frequency of CD163+ anti-inflammatory AM was decreased, whereas CD163-CCR7+ proinflammatory AM were increased in HIV infection. HIV-mediated proinflammatory polarization was associated with increased levels of inflammatory cytokines and macrophage activation. Conversely, smoking heightened the inflammatory response evident by change in the expression of CXCR4 and TLR4. Altogether, these findings suggest that HIV infection, along with cigarette smoke, favors a proinflammatory macrophage phenotype associated with enhanced expression of inflammatory molecules. Further, this study highlights time-of-flight mass cytometry as a reliable method for immunophenotyping the highly autofluorescent cells present in the bronchoalveolar lavage of cigarette smokers.


Asunto(s)
Antiinflamatorios/inmunología , Infecciones por VIH/inmunología , Inflamación/inmunología , Macrófagos Alveolares/inmunología , Adulto , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/inmunología , Femenino , Humanos , Inmunofenotipificación/métodos , Pulmón/inmunología , Masculino , Persona de Mediana Edad , Fumadores , Fumar/inmunología
16.
Blood Adv ; 4(8): 1628-1639, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32311014

RESUMEN

The oncogenic drivers and progression factors in multiple myeloma (MM) are heterogeneous and difficult to target therapeutically. Many different MM drugs have emerged, however, that attack various phenotypic aspects of malignant plasma cells. These drugs are administered in numerous, seemingly interchangeable combinations. Although the availability of many treatment options is useful, no clinical test capable of optimizing and sequencing the treatment regimens for an individual patient is currently available. To overcome this problem, we developed a functional ex vivo approach to measure patients' inherent and acquired drug resistance. This method, which we termed myeloma drug sensitivity testing (My-DST), uses unselected bone marrow mononuclear cells with a panel of drugs in clinical use, followed by flow cytometry to measure myeloma-specific cytotoxicity. We found that using whole bone marrow cultures helped preserve primary MM cell viability. My-DST was used to profile 55 primary samples at diagnosis or at relapse. Sensitivity or resistance to each drug was determined from the change in MM viability relative to untreated control samples. My-DST identified progressive loss of sensitivity to immunomodulatory drugs, proteasome inhibitors, and daratumumab through the disease course, mirroring the clinical development of resistance. Prospectively, patients' ex vivo drug sensitivity to the drugs subsequently received was sensitive and specific for clinical response. In addition, treatment with <2 drugs identified as sensitive by My-DST led to inferior depth and duration of clinical response. In summary, ex vivo drug sensitivity is prognostically impactful and, with further validation, may facilitate more personalized and effective therapeutic regimens.


Asunto(s)
Mieloma Múltiple , Anticuerpos Monoclonales , Humanos , Mieloma Múltiple/tratamiento farmacológico , Recurrencia Local de Neoplasia , Inhibidores de Proteasoma
17.
Microbiome ; 8(1): 50, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32252810

RESUMEN

Following publication of the original article [1], the authors reported an error in Fig. 2. The original Fig. 2 has been incorrectly replaced with the Supplementary Fig. 2. The correct Fig. 2 is presented here.

18.
Gut Microbes ; 11(3): 610-619, 2020 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-32036739

RESUMEN

Gaining a complete understanding of transmission risk factors will assist in efforts to reduce new HIV infections, especially within the disproportionally affected population of men who have sex with men (MSM). We recently reported that the fecal microbiota of MSM elevates immune activation in gnotobiotic mice and enhances HIV infection in vitro over that of fecal microbiota from men who have sex with women. We also demonstrated elevation of the gut homing marker CD103 (integrin αE) on CD4+ T cells by MSM-microbiota. Here we provide additional evidence that the gut microbiota is a risk factor for HIV transmission in MSM by showing elevated frequencies of the HIV co-receptor CCR5 on CD4+ T cells in human rectosigmoid colon biopsies. We discuss our interest in specific MSM-associated bacteria and propose the influx of CD103+ and CCR5+ CD4+ T cells into the colon as a potential link between the MSM microbiota and HIV transmission.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por VIH/microbiología , Infecciones por VIH/transmisión , Minorías Sexuales y de Género , Linfocitopenia-T Idiopática CD4-Positiva/inmunología , Adolescente , Adulto , Antígenos CD/inmunología , Biopsia , Colon/inmunología , Colon/microbiología , Femenino , Infecciones por VIH/inmunología , Humanos , Cadenas alfa de Integrinas/inmunología , Masculino , Persona de Mediana Edad , Receptores CCR5/inmunología , Factores de Riesgo , Conducta Sexual , Linfocitopenia-T Idiopática CD4-Positiva/microbiología , Adulto Joven
19.
Infect Immun ; 88(3)2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31871098

RESUMEN

Activated B cells modulate infection by differentiating into pathogen-specific antibody-producing effector plasmablasts/plasma cells, memory cells, and immune regulatory B cells. In this context, the B cell phenotypes that infiltrate the central nervous system during human immunodeficiency virus (HIV) and cryptococcal meningitis coinfection are ill defined. We characterized clinical parameters, mortality, and B cell phenotypes in blood and cerebrospinal fluid (CSF) by flow cytometry in HIV-infected adults with cryptococcal (n = 31) and noncryptococcal (n = 12) meningitis and in heathy control subjects with neither infection (n = 10). Activation of circulating B cells (CD21low) was significantly higher in the blood of subjects with HIV infection than in that of healthy controls and greater yet in matched CSF B cells (P < 0.001). Among B cell subsets, elevated frequencies of memory and plasmablasts/plasma cells most clearly distinguished the CSF from blood compartments. With cryptococcal meningitis, lower frequencies of expression of the regulatory protein programmed death-1 (PD-1) on plasmablasts/plasma cells in blood (median, 7%) at presentation were associated with significantly decreased 28-day survival (29% [4/14 subjects]), whereas higher PD-1 expression (median, 46%) characterized subjects with higher survival (88% [14/16 subjects]). With HIV infection, B cell differentiation and regulatory markers are discrete elements of the circulating and CSF compartments with clinical implications for cryptococcal disease outcome, potentially due to their effects on the fungus and other local immune cells.


Asunto(s)
Linfocitos B/inmunología , Compartimento Celular/inmunología , Líquido Cefalorraquídeo/inmunología , Infecciones por VIH/complicaciones , Meningitis Criptocócica/inmunología , Adulto , Estudios de Casos y Controles , Coinfección , Femenino , Infecciones por VIH/inmunología , Humanos , Masculino , Meningitis Criptocócica/sangre , Meningitis Criptocócica/líquido cefalorraquídeo , Persona de Mediana Edad , Carga Viral
20.
BMC Bioinformatics ; 20(1): 432, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31429723

RESUMEN

BACKGROUND: Relationships between specific microbes and proper immune system development, composition, and function have been reported in a number of studies. However, researchers have discovered only a fraction of the likely relationships. "Omic" methodologies such as 16S ribosomal RNA (rRNA) sequencing and time-of-flight mass cytometry (CyTOF) immunophenotyping generate data that support generation of hypotheses, with the potential to identify additional relationships at a level of granularity ripe for further experimentation. Pairwise linear regressions between microbial and host immune features provide one approach for quantifying relationships between "omes", and the differences in these relationships across study cohorts or arms. This approach yields a top table of candidate results. However, the top table alone lacks the detail that domain experts such as microbiologists and immunologists need to vet candidate results for follow-up experiments. RESULTS: To support this vetting, we developed VOLARE (Visualization Of LineAr Regression Elements), a web application that integrates a searchable top table, small in-line graphs illustrating the fitted models, a network summarizing the top table, and on-demand detailed regression plots showing full sample-level detail. We applied VOLARE to three case studies-microbiome:cytokine data from fecal samples in human immunodeficiency virus (HIV), microbiome:cytokine data in inflammatory bowel disease and spondyloarthritis, and microbiome:immune cell data from gut biopsies in HIV. We present both patient-specific phenomena and relationships that differ by disease state. We also analyzed interaction data from system logs to characterize usage scenarios. This log analysis revealed that users frequently generated detailed regression plots, suggesting that this detail aids the vetting of results. CONCLUSIONS: Systematically integrating microbe:immune cell readouts through pairwise linear regressions and presenting the top table in an interactive environment supports the vetting of results for scientific relevance. VOLARE allows domain experts to control the analysis of their results, screening dozens of candidate relationships with ease. This interactive environment transcends the limitations of a static top table.


Asunto(s)
Enfermedad , Sistema Inmunológico/metabolismo , Microbiota , Programas Informáticos , Bacteroides/metabolismo , Estudios de Cohortes , Citocinas/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/microbiología , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Espondiloartritis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA