Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 27(6): 110044, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38883824

RESUMEN

The dorsolateral striatum (DLS) is important for performing actions persistently, even when it becomes suboptimal, reflecting a function that is reflexive and habitual. However, there are also ways in which persistent behaviors can result from a more prospective, planning mode of behavior. To help tease apart these possibilities for DLS function, we trained animals to perform a lever press for reward and then inhibited the DLS in key test phases: as the task shifted from a 1-press to a 3-press rule (upshift), as the task was maintained, as the task shifted back to the one-press rule (downshift), and when rewards came independent of pressing. During DLS inhibition, animals always favored their initially learned strategy to press just once, particularly so during the free-reward period. DLS inhibition surprisingly changed performance speed bidirectionally depending on the task shifts. DLS inhibition thus encouraged habitual behavior, suggesting it could normally help adapt to changing conditions.

2.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562679

RESUMEN

The frontal cortex plays a critical role in decision-making. One specific frontal area, the anterior cingulate cortex, has been identified as crucial for setting a threshold for how much evidence is needed before a choice is made (Domenech & Dreher, 2010). Threshold is a key concept in drift diffusion models, a popular framework used to understand decision-making processes. Here, we investigated the role of the prelimbic cortex, part of the rodent cingulate cortex, in decision making. Male and female rats learned to choose between stimuli associated with high and low value rewards. Females learned faster, were more selective in their responses, and integrated information about the stimuli more quickly. By contrast, males learned more slowly and showed a decrease in their decision thresholds during choice learning. Inactivating the prelimbic cortex in female and male rats sped up decision making without affecting choice accuracy. Drift diffusion modeling found selective effects of prelimbic cortex inactivation on the decision threshold, which was reduced with increasing doses of the GABA-A agonist muscimol. Stimulating the prelimbic cortex through mu opioid receptors slowed the animals' choice latencies and increased the decision threshold. These findings provide the first causal evidence that the prelimbic cortex directly influences decision processes. Additionally, they suggest possible sex-based differences in early choice learning.

3.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711550

RESUMEN

The dorsolateral striatum (DLS) is linked to the learning and honing of action routines. However, the DLS is also important for performing behaviors that have been successful in the past. The learning function can be thought of as prospective, helping to plan ongoing actions to be efficient and often optimal. The performance function is more retrospective, helping the animal continue to behave in a way that had worked previously. How the DLS manages this all is curious. What happens when a learned behavior becomes sub-optimal due to environment changes. In this case, the prospective function of the DLS would cause animals to (adaptively) learn and plan more optimal actions. In contrast, the retrospective function would cause animals to (maladaptively) favor the old behavior. Here we find that, during a change in learned task rules, DLS inhibition causes animals to adjust less rapidly to the new task (and to behave less vigorously) in a 'maladaptive' way. Yet, when the task is changed back to the initially learned rules, DLS inhibition instead causes a rapid and vigorous adjustment of behavior in an 'adaptive' way. These results show that inhibiting the DLS biases behavior towards initially acquired strategies, implying a more retrospective outlook in action selection when the DLS is offline. Thus, an active DLS could encourage planning and learning action routines more prospectively. Moreover, the DLS control over behavior can appear to be either advantageous/flexible or disadvantageous/inflexible depending on task context, and its control over vigor can change depending on task context. Significant Statement: Basal ganglia networks aid behavioral learning (a prospective planning function) but also favor the use of old behaviors (a retrospective performance function), making it unclear what happens when learned behaviors become suboptimal. Here we inhibit the dorsolateral striatum (DLS) as animals encounter a change in task rules, and again when they shift back to those learned task rules. DLS inhibition reduces adjustment to new task rules (and reduces behavioral vigor), but it increases adjustment back to the initially learned task rules later (and increases vigor). Thus, in both cases, DLS inhibition favored the use of the initially learned behavioral strategy, which could appear either maladaptive or adaptive. We suggest that the DLS might promote a prospective orientation of action control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...