Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36332611

RESUMEN

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Asunto(s)
Bases de Datos Genéticas , Laboratorios , Humanos , Variación Genética , Australia , Pruebas Genéticas
2.
J Cell Mol Med ; 22(8): 3887-3898, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29761849

RESUMEN

Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with an unmet need for improved therapies. Responses to standard cytotoxic therapy in AML are often transient because of the emergence of chemotherapy-resistant disease. The MUC1-C oncoprotein governs critical pathways of tumorigenesis, including self-renewal and survival, and is aberrantly expressed in AML blasts and leukaemia stem cells (LSCs). However, a role for MUC1-C in linking leukaemogenesis and resistance to treatment has not been described. In this study, we demonstrate that MUC1-C overexpression is associated with increased leukaemia initiating capacity in an NSG mouse model. In concert with those results, MUC1-C silencing in multiple AML cell lines significantly reduced the establishment of AML in vivo. In addition, targeting MUC1-C with silencing or pharmacologic inhibition with GO-203 led to a decrease in active ß-catenin levels and, in-turn, down-regulation of survivin, a critical mediator of leukaemia cell survival. Targeting MUC1-C was also associated with increased sensitivity of AML cells to Cytarabine (Ara-C) treatment by a survivin-dependent mechanism. Notably, low MUC1 and survivin gene expression were associated with better clinical outcomes in patients with AML. These findings emphasize the importance of MUC1-C to myeloid leukaemogenesis and resistance to treatment by driving survivin expression. Our findings also highlight the potential translational relevance of combining GO-203 with Ara-C for the treatment of patients with AML.

3.
Br J Haematol ; 176(6): 929-938, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28107546

RESUMEN

Multiple myeloma (MM) is a lethal haematological malignancy that arises in the context of a tumour microenvironment that promotes resistance to apoptosis and immune escape. In the present study, we demonstrate that co-culture of MM cells with stromal cells results in increased resistance to cytotoxic and biological agents as manifested by decreased rates of cell death following exposure to alkylating agents and the proteosome inhibitor, bortezomib. To identify the mechanism of increased resistance, we examined the effect of the co-culture of MM cells with stroma cells, on expression of the MUC1 oncogene, known to confer tumour cells with resistance to apoptosis and necrosis. Co-culture of stroma with MM cells resulted in increased MUC1 expression by tumour cells. The effect of stromal cell co-culture on MUC1 expression was not dependent on cell contact and was therefore thought to be due to soluble factors secreted by the stromal cells into the microenvironment. We demonstrated that MUC1 expression was mediated by interleukin-6 and subsequent up-regulation of the JAK-STAT pathway. Interestingly, the effect of stromal cell co-culture on tumour resistance was partially reversed by silencing of MUC1 in MM cells, consistent with the potential role of MUC1 in mediating resistance to cytotoxic-based therapies.


Asunto(s)
Médula Ósea/metabolismo , Médula Ósea/patología , Comunicación Celular , Mucina-1/biosíntesis , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Células del Estroma/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Técnicas de Cocultivo , Citocinas/metabolismo , Resistencia a Antineoplásicos/genética , Expresión Génica , Silenciador del Gen/efectos de los fármacos , Humanos , Janus Quinasa 2/metabolismo , Mucina-1/genética , Mieloma Múltiple/genética , Inhibidores de Proteasoma/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Blood ; 129(13): 1791-1801, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28126925

RESUMEN

Myeloid-derived suppressor cells (MDSCs) play a critical role in promoting immune tolerance and disease growth. The mechanism by which tumor cells evoke the expansion of MDSCs in acute myeloid leukemia (AML) has not been well described. We have demonstrated that patients with AML exhibit increased presence of MDSCs in their peripheral blood, in comparison with normal controls. Cytogenetic studies demonstrated that MDSCs in patients with AML may be derived from leukemic or apparently normal progenitors. Engraftment of C57BL/6 mice with TIB-49 AML led to an expansion of CD11b+ Gr1+ MDSCs in bone marrow and spleen. Coculture of the AML cell lines MOLM-4, THP-1 or primary AML cells with donor peripheral blood mononuclear cells elicited a cell contact-dependent expansion of MDSCs. MDSCs were suppressive of autologous T-cell responses as evidenced by reduced T-cell proliferation and a switch from a Th1 to a Th2 phenotype. We hypothesized that the expansion of MDSCs in AML is accomplished by tumor-derived extracellular vesicles (EVs). Using tracking studies, we demonstrated that AML EVs are taken-up myeloid progenitor cells, resulting in the selective proliferation of MDSCs in comparison with functionally competent antigen-presenting cells. The MUC1 oncoprotein was subsequently identified as the critical driver of EV-mediated MDSC expansion. MUC1 induces increased expression of c-myc in EVs that induces proliferation in the target MDSC population via downstream effects on cell cycle proteins. Moreover, we demonstrate that the microRNA miR34a acts as the regulatory mechanism by which MUC1 drives c-myc expression in AML cells and EVs.


Asunto(s)
Proliferación Celular , Leucemia Mieloide Aguda/patología , Mucina-1/fisiología , Células Supresoras de Origen Mieloide/patología , Animales , Comunicación Celular , Línea Celular Tumoral , Técnicas de Cocultivo , Vesículas Extracelulares/patología , Xenoinjertos , Humanos , Leucocitos Mononucleares , Ratones , MicroARNs/fisiología , Proteínas Proto-Oncogénicas c-myc/biosíntesis
5.
Sci Transl Med ; 8(368): 368ra171, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27928025

RESUMEN

We developed a personalized cancer vaccine in which patient-derived acute myeloid leukemia (AML) cells are fused with autologous dendritic cells, generating a hybridoma that potently stimulates broad antitumor responses. We report results obtained from the first 17 AML patients, who achieved remission after chemotherapy and were then serially vaccinated to target minimal residual disease and prevent relapse. Vaccination was well tolerated and induced inflammatory responses at the site of administration, characterized by the dense infiltration of T cells. Vaccination was also associated with a marked rise in circulating T cells recognizing whole AML cells and leukemia-specific antigens that persisted for more than 6 months. Twelve of 17 vaccinated patients (71%; 90% confidence interval, 52 to 89%) remain alive without recurrence at a median follow-up of 57 months. The results demonstrate that personalized vaccination of AML patients in remission induces the expansion of leukemia-specific T cells and may be protective against disease relapse.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Leucemia Mieloide Aguda/inmunología , Inducción de Remisión , Vacunación , Adulto , Anciano , Antígenos de Neoplasias/inmunología , Antineoplásicos/farmacología , Femenino , Humanos , Sistema Inmunológico , Masculino , Persona de Mediana Edad , Neoplasia Residual , Linfocitos T/inmunología , Linfocitos T Reguladores/citología , Resultado del Tratamiento
6.
Mol Ecol ; 25(22): 5647-5662, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27393073

RESUMEN

Microgeographic adaptation provides a particularly interesting context for understanding the genetic basis of phenotypic divergence and may also present unique empirical challenges. In particular, plant adaptation to extreme soil mosaics may generate barriers to gene flow or shifts in mating system that confound simple genomic scans for adaptive loci. Here, we combine three approaches - quantitative trait locus (QTL) mapping of candidate intervals in controlled crosses, population resequencing (PoolSeq) and analyses of wild recombinant individuals - to investigate one trait associated with Mimulus guttatus (yellow monkeyflower) adaptation to geothermal soils in Yellowstone National Park. We mapped a major QTL causing dense leaf trichomes in thermally adapted plants to a <50-kb region of linkage Group 14 (Tr14) previously implicated in trichome divergence between independent M. guttatus populations. A PoolSeq scan of Tr14 region revealed a cluster of six genes, coincident with the inferred QTL peak, with high allele frequency differences sufficient to explain observed phenotypic differentiation. One of these, the R2R3 MYB transcription factor Migut.N02661, is a plausible functional candidate and was also strongly associated (r2  = 0.27) with trichome phenotype in analyses of wild-collected admixed individuals. Although functional analyses will be necessary to definitively link molecular variants in Tr14 with trichome divergence, our analyses are a major step in that direction. They point to a simple, and parallel, genetic basis for one axis of Mimulus guttatus adaptation to an extreme habitat, suggest a broadly conserved genetic basis for trichome variation across flowering plants and pave the way for further investigations of this challenging case of microgeographic incipient speciation.


Asunto(s)
Adaptación Biológica/genética , Mimulus/genética , Tricomas/genética , Mapeo Cromosómico , Frecuencia de los Genes , Ligamiento Genético , Genética de Población , Montana , Sitios de Carácter Cuantitativo
7.
Blood ; 126(3): 354-62, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26048911

RESUMEN

Cutaneous T-cell lymphoma (CTCL) is an aggressive neoplasm with limited treatments for patients with advanced disease. The mucin 1 C-terminal subunit (MUC1-C) oncoprotein plays a critical role in regulating cell proliferation, apoptosis, and protection from cytotoxic injury mediated by reactive oxygen species (ROS). Although CTCL cells exhibit resistance to ROS-induced apoptosis, the expression and functional significance of MUC1 in CTCL have not been previously investigated. Present studies demonstrate that MUC1-C is overexpressed in CTCL cell lines and primary CTCL cells but is absent in resting T cells from healthy donors and B-cell lymphoma cells. We have developed a cell-penetrating peptide that disrupts homodimerization of the MUC1-C subunit necessary for its nuclear translocation and downstream signaling. We show that treatment of CTCL cells with the MUC1-C inhibitor is associated with downregulation of the p53-inducible regulator of glycolysis and apoptosis and decreases in reduced NAD phosphate and glutathione levels. In concert with these results, targeting MUC1-C in CTCL cells increased ROS and, in turn, induced ROS-mediated late apoptosis/necrosis. Targeting MUC1-C in CTCL tumor xenograft models demonstrated significant decreases in disease burden. These findings indicate that MUC1-C maintains redox balance in CTCL cells and is thereby a novel target for the treatment of patients with CTCL.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Linfoma Cutáneo de Células T/metabolismo , Mucina-1/metabolismo , Péptidos/farmacología , Neoplasias Cutáneas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Western Blotting , Estudios de Casos y Controles , Femenino , Citometría de Flujo , Glutatión/metabolismo , Humanos , Técnicas para Inmunoenzimas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma Cutáneo de Células T/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mucina-1/química , Mucina-1/genética , NADP/metabolismo , Necrosis , Estrés Oxidativo , Monoéster Fosfórico Hidrolasas , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...