Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 178: 113621, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35421642

RESUMEN

Ten benthic fauna taxa in a polluted marine area adjacent to McMurdo Station, Antarctica were deemed to be potential biomonitors because PCBs, DDTs, PAHs, copper, lead and/or zinc in their tissues were significantly higher than in tissues of taxa living in reference areas (p < 0.05). Concentrations of PCBs and DDT were highest in Trematomus (fish). Total PAH concentrations were highest in Alcyonium antarcticum (soft coral), Isotealia antarctica (anemone) and L. elliptica. Copper and lead concentrations were highest in Laternula elliptica (bivalve) and Flabegraviera mundata (polychaete), and lowest in Trematomus and Parbolasia corrugatus (nemertean). However, copper concentrations were even higher in the asteroids Perknaster fuscus antarcticus, Odontaster validus and Psilaster charcoti. Bioaccumulation factors for different species were highest for PCBs and DDT, and lowest for lead. Bioaccumulation of some contaminants are likely prevalent in benthic taxa at McMurdo Station, but concentrations are usually low relative to human consumption standards.


Asunto(s)
Bivalvos , Perciformes , Bifenilos Policlorados , Animales , Regiones Antárticas , Cobre , DDT , Monitoreo del Ambiente , Sedimentos Geológicos , Plomo , Bifenilos Policlorados/análisis
2.
PLoS One ; 16(8): e0255931, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34398914

RESUMEN

Human activities and regional-scale climate variability drive changes in the ecology of coastal and marine ecosystems. Ecological restoration has emerged as a best-management practice to combat habitat degradation and restore lost ecological functions. However, relatively short project monitoring timeframes have limited our understanding of the effects of interannual climate cycles on water quality and restoration dynamics. We collected measurements on a 23-ha oyster reef constructed in the Gulf of Mexico to determine the relationship between El Niño Southern Oscillation (ENSO)-driven climate variability and local salinity patterns, and to evaluate the effects of this climate variability and salinity on oyster population dynamics and faunal community composition over a medium-term (five-year) timeframe. The role of ENSO-driven climate variability on local salinity patterns (primarily from changes in precipitation and evaporation) and faunal dynamics was investigated using the Oceanic Niño Index (ONI). Salinity was negatively correlated with ONI with an approximately 4-month lag. Higher ONI values (El Niño periods) were followed by reductions in salinity, increases in oyster recruitment and density, and reductions in resident motile fauna density and species richness. Lower ONI values (La Niña periods) had higher and less variable salinities, and higher areal coverage of restoration substrates by large oysters. ENSO-driven salinity reductions in the second year after reef construction coincided with a shift in resident motile faunal community composition that was maintained despite a second strong salinity reduction in year 5. Our results indicate that it is important to expand the typical monitoring timeframes to at least five years so that resource managers and restoration practitioners can better understand how both short-term environmental variability and longer-term climate cycles can affect the outcomes of restoration actions.


Asunto(s)
El Niño Oscilación del Sur , Ecosistema , Salinidad
3.
Conserv Physiol ; 9(1): coab065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447578

RESUMEN

The eastern oyster, Crassostrea virginica, is a foundation species within US Gulf of Mexico (GoM) estuaries that has experienced substantial population declines. As changes from management and climate are expected to continue to impact estuarine salinity, understanding how local oyster populations might respond and identifying populations with adaptations to more extreme changes in salinity could inform resource management, including restoration and aquaculture programs. Wild oysters were collected from four estuarine sites from Texas [Packery Channel (PC): 35.5, annual mean salinity, Aransas Bay (AB): 23.0] and Louisiana [Calcasieu Lake (CL): 16.2, Vermilion Bay (VB): 7.4] and spawned. The progeny were compared in field and laboratory studies under different salinity regimes. For the field study, F1 oysters were deployed at low (6.4) and intermediate (16.5) salinity sites in Alabama. Growth and mortality were measured monthly. Condition index and Perkinsus marinus infection intensity were measured quarterly. For the laboratory studies, mortality was recorded in F1 oysters that were exposed to salinities of 2.0, 4.0, 20.0/22.0, 38.0 and 44.0 with and without acclimation. The results of the field study and laboratory study with acclimation indicated that PC oysters are adapted to high-salinity conditions and do not tolerate very low salinities. The AB stock had the highest plasticity as it performed as well as the PC stock at high salinities and as well as Louisiana stocks at the lowest salinity. Louisiana stocks did not perform as well as the Texas stocks at high salinities. Results from the laboratory studies without salinity acclimation showed that all F1 stocks experiencing rapid mortality at low salinities when 3-month oysters collected at a salinity of 24 were used and at both low and high salinities when 7-month oysters collected at a salinity of 14.5 were used.

4.
Sci Total Environ ; 764: 142798, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33077209

RESUMEN

Improved waste management at McMurdo Station, Antarctica beginning in the 1980s has been followed by decreases in polycyclic aromatic hydrocarbon (PAH) and metal contamination in the adjacent marine sediments. However, determining the effect of the decreased contamination on marine ecological indicators (macrobenthic fauna) is confounded by concurrent changes in climate cycles and other physical forces. Between 2000 and 2013, there was a decrease in concentrations of some contaminants including mercury, copper, organochlorines, and PAHs in marine sediments adjacent to McMurdo Station. PAH concentrations in Winter Quarters Bay decreased an order of magnitude from 2000/2003 to 2012/2013 and were within an order of magnitude of reference area concentrations by 2013. Macrobenthic communities did not indicate any sign of recovery and have not become more similar to reference communities over this same period of time. Temporal changes in macrobenthic community composition during the study period had higher correlations with climatic and sea ice dynamics than with changes in contaminant concentrations. The Interdecadal Pacific Oscillation climatic index had the highest correlation with macrobenthic community composition. The Antarctic Oscillation climatic index, maximum ice extent and other natural environmental factors also appear to influence macrobenthic community composition. Despite large improvements in environmental management at McMurdo Station, continuing environmental vigilance is necessary before any noticeable improvement in ecological systems is likely to occur. The effects of climate must be considered when determining temporal changes in anthropogenic effects in Antarctica. Maintaining long-term monitoring of both contaminants and ecological indicators is important for determining the localized and global influences of humans on Antarctica, which will have implications for the whole planet.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Regiones Antárticas , Ecosistema , Sedimentos Geológicos , Humanos , Metales/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
5.
J Fish Biol ; 93(2): 250-262, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29935002

RESUMEN

The Baffin Bay estuary is a hypersaline system in the Gulf of Mexico that supports an important recreational and commercial fishery for black drum Pogonias cromis, a benthic predator. Seasonal measurements of water quality variables, benthic macrofauna densities and biomass, and determination of P. cromis food sources using stomach-content and stable-isotope analyses were carried out to determine how P. cromis food sources change with water quality and how this may affect P. cromis diet. Gut-content analysis indicated P. cromis selectively consumed bivalves Mulinia lateralis and Anomalocardia auberiana. Isotope compositions demonstrated that P. cromis relied on these benthic food resources produced in the Baffin Bay estuary year-round. Biomass and densities of these bivalves were influenced by changes in water quality variables, particularly salinity and dissolved oxygen. Thus, this paper demonstrates the relationship between water quality variables, benthic macrofauna, and their use as food resources by a carnivorous fish species, and emphasizes the need for integrated assessments when studying the effects of water quality on ecosystem function. Holistic approaches such as these can provide important information for management and conservation of fishery resources and can improve predictions of ecosystem response to climate variability.


Asunto(s)
Dieta , Ecosistema , Estuarios , Perciformes , Calidad del Agua , Animales , Biomasa , Isótopos de Carbono/análisis , Contenido Digestivo , Golfo de México , Isótopos de Nitrógeno/análisis
6.
Mar Environ Res ; 127: 32-40, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28336052

RESUMEN

As ecosystem engineers, oysters create and maintain structured habitat and can influence trophodynamics and benthic-pelagic coupling in the surrounding landscape. The physical reef structure and associated biotic parameters can affect the availability of food resources for oysters. Oysters and potential composite food sources - suspended particulate organic matter (SPOM) and surface sediment organic matter (SSOM) - were assessed using a dual stable isotope (δ13C, δ15N) approach at three reef types (natural, restored, and unconsolidated) seasonally for two years to determine if changes in physical and/or biotic parameters affected the relative availability and/or use of food resources by oysters. SPOM was more depleted in 13C (-24.2 ± 0.6‰, mean ± SD) than SSOM (-21.2 ± 0.8‰). SPOM composition is likely dominated by autochthonous phytoplankton production, while SSOM includes trapped phytoplankton and benthic microalgae. SSOM was used by oysters in increasing proportions relative to SPOM over time at all reef types. This temporal trend is likely due to increased oyster biomass over time, promoting enhanced microphytobenthos growth through feedback effects related to oyster biodeposits. Structural differences between reef types observed in this study had no effect on food resource availability and use by oysters, indicating strong bentho-pelagic coupling likely due to shallow depths as well as strong and consistent winds. This study provides insights for restoration of oyster reefs as it highlights that food resources used by oysters remain similar among reef types despite changes in abiotic and biotic parameters among habitats and over time.


Asunto(s)
Monitoreo del Ambiente , Ostreidae/fisiología , Animales , Biomasa , Isótopos de Carbono/análisis , Ecosistema , Cadena Alimentaria , Isótopos de Nitrógeno/análisis , Fitoplancton , Dinámica Poblacional
7.
Integr Environ Assess Manag ; 12(3): 529-39, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26273802

RESUMEN

Florida legislation requires determining and implementing an appropriate range and frequency of freshwater inflows that will sustain a fully functional estuary. Changes in inflow dynamics to the Caloosahatchee Estuary, Florida have altered salinity regimes that, in turn, have altered the ecological integrity of the estuary. The purpose of this current project is to determine how changes in freshwater inflows affect water quality, and in turn, benthic macrofauna, spatially within the Caloosahatchee Estuary and between multiyear wet and dry periods. Thirty-four benthic species were identified as being indicator species for salinity zones, and the estuary was divided into 4 zones based on differences in community structure within the estuary. Community structure had the highest correlations with water quality parameters that were common indicators of freshwater conditions resulting from inflows. A significant relationship between salinity and diversity occurs both spatially and temporally because of increased numbers of marine species as salinities increase. A salinity-based model was used to estimate inflow during wet and dry periods for each of the macrofauna community zones. The approach used here (identifying bioindicators and community zones with corresponding inflow ranges) is generic and will be useful for developing targets for managing inflow in estuaries worldwide. Integr Environ Assess Manag 2016;12:529-539. © 2015 SETAC.


Asunto(s)
Organismos Acuáticos/fisiología , Monitoreo del Ambiente , Estuarios , Agua Dulce/análisis , Invertebrados/fisiología , Salinidad , Animales , Florida
8.
Environ Monit Assess ; 185(7): 5917-35, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23179724

RESUMEN

Packery Channel is part of a complex of storm washover channels which, before 1912, have opened intermittently, linking the Laguna Madre and Corpus Christi Bay, Texas with the Gulf of Mexico. On 21 July 2005, with the assistance of Hurricane Emily, Packery Channel was prematurely opened to the Gulf of Mexico, months before construction of a dredged channel was scheduled to be completed. A before-versus-after, control-versus-impact (BACI) design was used to assess the effects of reopening Packery Channel on water quality and estuarine macrofauna in Mollie Beattie Coastal Habitat Community (MBCHC), Corpus Christi Bay. Two deep (approximately 1 m below m.s.l.) and two shallow (approximately 0.2 m below m.s.l.) stations were sampled monthly for physical and biological characteristics at both control and impact sites between November 2003 and March 2009. The opening of Packery Channel created a unique situation where salinities decreased after the channel opening by ameliorating hypersalinity in Laguna Madre rather than increasing salinities as would occur in most estuaries worldwide. Salinity also fluctuated in a diurnal pattern after the opening of Packery Channel. Apart from salinity, Packery Channel has caused little hydrographic change in MBCHC since opening in July 2005. There was little effect on the macrofaunal community composition. There was a greater difference in community composition between deep and shallow stations than between either before and after or control and impact sites. There have been no significant changes in abundance, biomass, or N1 diversity caused by the opening of Packery Channel.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Estuarios , Invertebrados/crecimiento & desarrollo , Agua de Mar/química , Animales , Organismos Acuáticos/clasificación , Ecosistema , Monitoreo del Ambiente , Invertebrados/clasificación , Medición de Riesgo , Salinidad , Texas
9.
PLoS One ; 7(7): e40839, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792410

RESUMEN

Oyster reefs are one of the most threatened marine habitats on earth, with habitat loss resulting from water quality degradation, coastal development, destructive fishing practices, overfishing, and storm impacts. For successful and sustainable oyster reef restoration efforts, it is necessary to choose sites that support long-term growth and survival of oysters. Selection of suitable sites is critically important as it can greatly influence mortality factors and may largely determine the ultimate success of the restoration project. The application of Geographic Information Systems (GIS) provides an effective methodology for identifying suitable sites for oyster reef restoration and removes much of the uncertainty involved in the sometimes trial and error selection process. This approach also provides an objective and quantitative tool for planning future oyster reef restoration efforts. The aim of this study was to develop a restoration suitability index model and reef quality index model to characterize locations based on their potential for successful reef restoration within the Mission-Aransas Estuary, Texas, USA. The restoration suitability index model focuses on salinity, temperature, turbidity, dissolved oxygen, and depth, while the reef quality index model focuses on abundance of live oysters, dead shell, and spat. Size-specific Perkinsus marinus infection levels were mapped to illustrate general disease trends. This application was effective in identifying suitable sites for oyster reef restoration, is flexible in its use, and provides a mechanism for considering alternative approaches. The end product is a practical decision-support tool that can be used by coastal resource managers to improve oyster restoration efforts. As oyster reef restoration activities continue at small and large-scales, site selection criteria are critical for assisting stakeholders and managers and for maximizing long-term sustainability of oyster resources.


Asunto(s)
Conservación de los Recursos Naturales , Crassostrea/crecimiento & desarrollo , Gestión de la Información/métodos , Animales , Ecosistema , Ambiente , Estuarios , Dinámica Poblacional , Texas
10.
Environ Manage ; 41(4): 573-83, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18247082

RESUMEN

Over two years after the original creation of a sand excavation pit 8 km off the Louisiana coast, benthic macrofauna communities and sedimentary characteristics are still effected. Macrofaunal communities inside the pit had lower abundance, biomass, and diversity than communities outside the pit. This difference, however, was only significant with some of the stations outside the pit. Results from multi-dimensional scaling and cluster analysis showed that macrofaunal communities were less than 32% similar inside the pit to communities outside the pit. The polychaete Mediomastus ambiseta was the most abundant species outside the excavation pit, but the species was only counted once inside the pit. The most dominant species, which made up over 90% of organisms inside the pit, was the pioneer polychaete Paraprionospio pinnata. Only three species were found at each station inside the pit as opposed to 9-27 species at stations outside the pit. All species inside the pit were also found outside the pit; thus, change was due to a loss of species rather than replacement by different species. Sediment inside the pit contained more silt and clay; however, no difference in water quality was detected compared with outside the pit. Hurricanes Katrina and Rita passed near the dredge pit in 2005 and could have effected sediment transport in the region. Because the macrofaunal community inside the pit has not recovered within 38 months, it is likely that it will require more time before it resembles the surrounding conditions.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Invertebrados/clasificación , Dióxido de Silicio , Animales , Biomasa , Monitoreo del Ambiente , Sedimentos Geológicos , Louisiana , Tamaño de la Partícula , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...