Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Open Biol ; 14(8): 240060, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139050

RESUMEN

Successful colonization by the opportunistic pathogen Staphylococcus aureus depends on its ability to interact with other microorganisms. Staphylococcus aureus strains harbour a T7b subtype of type VII secretion system (T7SSb), a protein secretion system found in a wide variety of Bacillota, which functions in bacterial antagonism and virulence. Assessment of T7SSb activity in S. aureus has been hampered by low secretion activity under laboratory conditions and the lack of a sensitive assay to measure secretion. Here, we have utilized NanoLuc binary technology to develop a simple assay to monitor protein secretion via detection of bioluminescence. Fusion of the 11 amino acid NanoLuc fragment to the conserved substrate EsxA permits its extracellular detection upon supplementation with the large NanoLuc fragment and luciferase substrate. Following miniaturization of the assay to 384-well format, we use high-throughput analysis to demonstrate that T7SSb-dependent protein secretion differs across strains and growth temperature. We further show that the same assay can be used to monitor secretion of the surface-associated toxin substrate TspA. Using this approach, we identify three conserved accessory proteins required to mediate TspA secretion. Co-purification experiments confirm that all three proteins form a complex with TspA.


Asunto(s)
Proteínas Bacterianas , Staphylococcus aureus , Sistemas de Secreción Tipo VII , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Sistemas de Secreción Tipo VII/metabolismo , Sistemas de Secreción Tipo VII/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Mediciones Luminiscentes/métodos
3.
Microlife ; 5: uqae013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957458

RESUMEN

Type VII secretion systems (T7SS) are found in bacteria across the Bacillota and Actinomycetota phyla and have been well described in Staphylococcus aureus, Bacillus subtilis, and pathogenic mycobacteria. The T7SS from Actinomycetota and Bacillota share two common components, a membrane-bound EccC/EssC ATPase and EsxA, a small helical hairpin protein of the WXG100 family. However, they also have additional phylum-specific components, and as a result they are termed the T7SSa (Actinomycetota) and T7SSb (Bacillota), respectively. Here, we identify additional organizations of the T7SS across these two phyla and describe eight additional T7SS subtypes, which we have named T7SSc-T7SSj. T7SSd is found exclusively in Actinomycetota including the Olselnella and Bifodobacterium genus, whereas the other seven are found only in Bacillota. All of the novel subtypes contain the canonical ATPase (TsxC) and the WXG100-family protein (TsxA). Most of them also contain a small ubiquitin-related protein, TsxB, related to the T7SSb EsaB/YukD component. Protein kinases, phosphatases, and forkhead-associated (FHA) proteins are often encoded in the novel T7SS gene clusters. Candidate substrates of these novel T7SS subtypes include LXG-domain and RHS proteins. Predicted substrates are frequently encoded alongside genes for additional small WXG100-related proteins that we speculate serve as cosecretion partners. Collectively our findings reveal unexpected diversity in the T7SS in Gram-positive bacteria.

4.
Curr Biol ; 34(7): R267-R268, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38593766

RESUMEN

In this Quick guide, Palmer and Berks introduce the twin-arginine translocation (Tat) systems. Tats are found in a variety of microbes and microbe-derived organelles, and are known to translocate folded substrate proteins across biological membranes.


Asunto(s)
Proteínas de Escherichia coli , Sistema de Translocación de Arginina Gemela , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Escherichia coli/metabolismo , Sistema de Translocación de Arginina Gemela/metabolismo , Membrana Celular/metabolismo , Arginina/metabolismo , Transporte de Proteínas , Señales de Clasificación de Proteína , Proteínas Bacterianas/metabolismo
5.
FEMS Microbes ; 5: xtae006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495077

RESUMEN

Staphylococcus aureus is highly adapted to colonization of the mammalian host. In humans the primary site of colonization is the epithelium of the nasal cavity. A major barrier to colonization is the resident microbiota, which have mechanisms to exclude S. aureus. As such, S. aureus has evolved mechanisms to compete with other bacteria, one of which is through secretion of proteinaceous toxins. S. aureus strains collectively produce a number of well-characterized Class I, II, and IV bacteriocins as well as several bacteriocin-like substances, about which less is known. These bacteriocins have potent antibacterial activity against several Gram-positive organisms, with some also active against Gram-negative species. S. aureus bacteriocins characterized to date are sporadically produced, and often encoded on plasmids. More recently the type VII secretion system (T7SS) of S. aureus has also been shown to play a role in interbacterial competition. The T7SS is encoded by all S. aureus isolates and so may represent a more widespread mechanism of competition used by this species. T7SS antagonism is mediated by the secretion of large protein toxins, three of which have been characterized to date: a nuclease toxin, EsaD; a membrane depolarizing toxin, TspA; and a phospholipase toxin, TslA. Further study is required to decipher the role that these different types of secreted toxins play in interbacterial competition and colonization of the host.

6.
Microbiology (Reading) ; 170(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488830

RESUMEN

Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of Escherichia coli to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities.


Asunto(s)
Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/análogos & derivados , Transportadores de Anión Orgánico , Simportadores , Ácido N-Acetilneuramínico/química , Simportadores/genética , Simportadores/metabolismo , Bacterias/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
7.
Microbiology (Reading) ; 170(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38363712

RESUMEN

The twin-arginine protein transport (Tat) system exports folded proteins across the cytoplasmic membranes of prokaryotes and the energy transducing-membranes of plant thylakoids and mitochondria. Proteins are targeted to the Tat machinery by N-terminal signal peptides with a conserved twin-arginine motif, and some substrates are exported as heterodimers where the signal peptide is present on one of the partner proteins. A subset of Tat substrates is found in the membrane. Tat-dependent membrane proteins usually have large globular domains and a single transmembrane helix present at the N- or C-terminus. Five Tat substrates that have C-terminal transmembrane helices have previously been characterized in the model bacterium Escherichia coli. Each of these is an iron-sulfur cluster-containing protein involved in electron transfer from hydrogen or formate. Here we have undertaken a bioinformatic search to identify further tail-anchored Tat substrates encoded in bacterial genomes. Our analysis has revealed additional tail-anchored iron-sulfur proteins associated in modules with either a b-type cytochrome or a quinol oxidase. We also identified further candidate tail-anchored Tat substrates, particularly among members of the actinobacterial phylum, that are not predicted to contain cofactors. Using reporter assays, we show experimentally that six of these have both N-terminal Tat signal peptides and C-terminal transmembrane helices. The newly identified proteins include a carboxypeptidase and a predicted protease, and four sortase substrates for which membrane integration is a prerequisite for covalent attachment to the cell wall.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de la Membrana , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Escherichia coli/metabolismo , Transporte de Proteínas , Arginina/metabolismo , Proteínas Portadoras/metabolismo , Señales de Clasificación de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
8.
Nat Commun ; 14(1): 8438, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114483

RESUMEN

The type VII protein secretion system (T7SS) is found in many Gram-positive bacteria and in pathogenic mycobacteria. All T7SS substrate proteins described to date share a common helical domain architecture at the N-terminus that typically interacts with other helical partner proteins, forming a composite signal sequence for targeting to the T7SS. The C-terminal domains are functionally diverse and in Gram-positive bacteria such as Staphylococcus aureus often specify toxic anti-bacterial activity. Here we describe the first example of a class of T7 substrate, TslA, that has a reverse domain organisation. TslA is widely found across Bacillota including Staphylococcus, Enterococcus and Listeria. We show that the S. aureus TslA N-terminal domain is a phospholipase A with anti-staphylococcal activity that is neutralised by the immunity lipoprotein TilA. Two small helical partner proteins, TlaA1 and TlaA2 are essential for T7-dependent secretion of TslA and at least one of these interacts with the TslA C-terminal domain to form a helical stack. Cryo-EM analysis of purified TslA complexes indicate that they share structural similarity with canonical T7 substrates. Our findings suggest that the T7SS has the capacity to recognise a secretion signal present at either end of a substrate.


Asunto(s)
Proteínas Bacterianas , Toxinas Biológicas , Proteínas Bacterianas/metabolismo , Staphylococcus aureus/metabolismo , Lipasa/metabolismo , Toxinas Biológicas/metabolismo , Transporte Biológico
9.
Microbiology (Reading) ; 169(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116759

RESUMEN

Successful occupancy of a given niche requires the colonising bacteria to interact extensively with the biotic and abiotic environment, including other resident microbes. Bacteria have evolved a range of protein secretion machines for this purpose with eleven such systems identified to date. The type VIIb secretion system (T7SSb) is utilised by Bacillota to secrete a range of protein substrates, including antibacterial toxins targeting closely related strains, and the system as a whole has been implicated in a range of activities such as iron acquisition, intercellular signalling, host colonisation and virulence. This review covers the components and secretion mechanism of the T7SSb, the substrates of these systems and their roles in Gram-positive bacteria, with a focus on interbacterial competition.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Tipo VI , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Virulencia , Bacterias Grampositivas , Transducción de Señal , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
10.
mBio ; 14(5): e0210023, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815362

RESUMEN

IMPORTANCE: Staphylococcus aureus is an opportunistic human pathogen associated with severe infections and antimicrobial resistance. S. aureus strains utilize a type VII secretion system to secrete toxins targeting competitor bacteria, likely facilitating colonization. EsaD is a nuclease toxin secreted by the type VII secretion system in many strains of S. aureus as well as other related bacterial species. Here, we identify three small proteins of previously unknown function as export factors, required for efficient secretion of EsaD. We show that these proteins bind to the transport domain of EsaD, forming a complex with a striking cane-like conformation.


Asunto(s)
Toxinas Biológicas , Sistemas de Secreción Tipo VII , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VII/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Regulación Bacteriana de la Expresión Génica , Toxinas Biológicas/metabolismo
11.
bioRxiv ; 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37461441

RESUMEN

The type VIIb protein secretion system (T7SSb) plays a role in interbacterial competition in Gram-positive Firmicute bacteria and secretes various toxic effector proteins. The mechanism of secretion and the roles of numerous conserved genes within T7SSb gene clusters remain unknown. EsaD is a nuclease toxin secreted by the Staphylococcus aureus T7SSb, which forms a complex with its cognate immunity protein, EsaG, and chaperone EsaE. Encoded upstream of EsaD are three small secreted proteins, EsxB, EsxC and EsxD. Here we show that EsxBCD bind to the transport domain of EsaD and function as EsaD export factors. We report the first structural information for a complete T7SSb substrate pre-secretion complex. Cryo-EM of the EsaDEG trimer and the EsaDEG-EsxBCD hexamer shows that incorporation of EsxBCD confers a conformation comprising a flexible globular cargo domain attached to a long narrow shaft that is likely to be crucial for efficient toxin export.

12.
Microb Genom ; 9(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37278699

RESUMEN

The type VIIb protein secretion system (T7SSb) is found in Bacillota (firmicute) bacteria and has been shown to mediate interbacterial competition. EssC is a membrane-bound ATPase that is a critical component of the T7SSb and plays a key role in substrate recognition. Prior analysis of available genome sequences of the foodborne bacterial pathogen Listeria monocytogenes has shown that although the T7SSb was encoded as part of the core genome, EssC could be found as one of seven different sequence variants. While each sequence variant was associated with a specific suite of candidate substrate proteins encoded immediately downstream of essC, many LXG-domain proteins were encoded across multiple essC sequence variants. Here, we have extended this analysis using a diverse collection of 37 930 L. monocytogenes genomes. We have identified a rare eighth variant of EssC present in ten L. monocytogenes lineage III genomes. These genomes also encode a large toxin of the rearrangement hotspot (Rhs) repeat family adjacent to essC8, along with a probable immunity protein and three small accessory proteins. We have further identified nine novel LXG-domain proteins, and four additional chromosomal hotspots across L. monocytogenes genomes where LXG proteins can be encoded. The eight L. monocytogenes EssC variants were also found in other Listeria species, with additional novel EssC types also identified. Across the genus, species frequently encoded multiple EssC types, indicating that T7SSb diversity is a primary feature of the genus Listeria.


Asunto(s)
Listeria monocytogenes , Sistemas de Secreción Tipo VII , Sistemas de Secreción Tipo VII/genética , Sistemas de Secreción Tipo VII/metabolismo , Listeria monocytogenes/genética , Proteínas Bacterianas/metabolismo
15.
PLoS Genet ; 19(6): e1010784, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37276233

RESUMEN

Competitive bacteria-bacteriophage interactions have resulted in the evolution of a plethora of bacterial defense systems preventing phage propagation. In recent years, computational and bioinformatic approaches have underpinned the discovery of numerous novel bacterial defense systems. Anti-phage systems are frequently encoded together in genomic loci termed defense islands. Here we report the identification and characterisation of a novel anti-phage system, that we have termed Shield, which forms part of the Pseudomonas defensive arsenal. The Shield system comprises the core component ShdA, a membrane-bound protein harboring an RmuC domain. Heterologous production of ShdA alone is sufficient to mediate bacterial immunity against several phages. We demonstrate that Shield and ShdA confer population-level immunity and that they can also decrease transformation efficiency. We further show that ShdA homologues can degrade DNA in vitro and, when expressed in a heterologous host, can alter the organisation of the host chromosomal DNA. Use of comparative genomic approaches identified how Shield can be divided into four subtypes, three of which contain additional components that in some cases can negatively affect the activity of ShdA and/or provide additional lines of phage defense. Collectively, our results identify a new player within the Pseudomonas bacterial immunity arsenal that displays a novel mechanism of protection, and reveals a role for RmuC domains in phage defense.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Pseudomonas/genética , Bacterias/genética , Genoma
16.
J Med Microbiol ; 72(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289488

RESUMEN

Introduction. One third of people with CF in the UK are co-infected by both Staphylococcus aureus and Pseudomonas aeruginosa. Chronic bacterial infection in CF contributes to the gradual destruction of lung tissue, and eventually respiratory failure in this group.Gap Statement. The contribution of S. aureus to cystic fibrosis (CF) lung decline in the presence or absence of P. aeruginosa is unclear. Defining the molecular and phenotypic characteristics of a range of S. aureus clinical isolates will help further understand its pathogenic capabilities.Aim. Our objective was to use molecular and phenotypic tools to characterise twenty-five clinical S. aureus isolates collected from mono- and coinfection with P. aeruginosa from people with CF at the Royal Victoria Infirmary, Newcastle upon Tyne.Methodology. Genomic DNA was extracted and sequenced. Multilocus sequence typing was used to construct phylogeny from the seven housekeeping genes. A pangenome was calculated using Roary, and cluster of Orthologous groups were assigned using eggNOG-mapper which were used to determine differences within core, accessory, and unique genomes. Characterisation of sequence type, clonal complex, agr and spa types was carried out using PubMLST, eBURST, AgrVATE and spaTyper, respectively. Antibiotic resistance was determined using Kirby-Bauer disc diffusion tests. Phenotypic testing of haemolysis was carried out using ovine red blood cell agar plates and mucoid phenotypes visualised using Congo red agar.Results. Clinical strains clustered closely based on agr type, sequence type and clonal complex. COG analysis revealed statistically significant enrichment of COG families between core, accessory and unique pangenome groups. The unique genome was significantly enriched for replication, recombination and repair, and defence mechanisms. The presence of known virulence genes and toxins were high within this group, and unique genes were identified in 11 strains. Strains which were isolated from the same patient all surpassed average nucleotide identity thresholds, however, differed in phenotypic traits. Antimicrobial resistance to macrolides was significantly higher in the coinfection group.Conclusion. There is huge variation in genetic and phenotypic capabilities of S. aureus strains. Further studies on how these may differ in relation to other species in the CF lung may give insight into inter-species interactions.


Asunto(s)
Coinfección , Fibrosis Quística , Infecciones Estafilocócicas , Animales , Ovinos , Staphylococcus aureus , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Coinfección/microbiología , Agar , Fenotipo , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología
17.
Microbiology (Reading) ; 169(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36790402

RESUMEN

The twin arginine transport (Tat) pathway exports folded proteins across the cytoplasmic membranes of prokaryotes and the thylakoid membranes of chloroplasts. In Escherichia coli and other Gram-negative bacteria, the Tat machinery comprises TatA, TatB and TatC components. A Tat receptor complex, formed from all three proteins, binds Tat substrates, which triggers receptor organization and recruitment of further TatA molecules to form the active Tat translocon. The polytopic membrane protein TatC forms the core of the Tat receptor and harbours two binding sites for the sequence-related TatA and TatB proteins. A 'polar' cluster binding site, formed by TatC transmembrane helices (TMH) 5 and 6 is occupied by TatB in the resting receptor and exchanges for TatA during receptor activation. The second binding site, lying further along TMH6, is occupied by TatA in the resting state, but its functional relevance is unclear. Here we have probed the role of this second binding site through a programme of random and targeted mutagenesis. Characterization of three stably produced TatC variants, P221R, M222R and L225P, each of which is inactive for protein transport, demonstrated that the substitutions did not affect assembly of the Tat receptor. Moreover, the substitutions that we analysed did not abolish TatA or TatB binding to either binding site. Using targeted mutagenesis we introduced bulky substitutions into the TatA binding site. Molecular dynamics simulations and crosslinking analysis indicated that TatA binding at this site was substantially reduced by these amino acid changes, but TatC retained function. While it is not clear whether TatA binding at the TMH6 site is essential for Tat activity, the isolation of inactivating substitutions indicates that this region of the protein has a critical function.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arginina/metabolismo , Proteínas Portadoras/metabolismo , Sitios de Unión , Transporte de Proteínas/fisiología
18.
Microb Genom ; 8(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35960642

RESUMEN

The type VII secretion system (T7SS) is found in many Gram-positive firmicutes and secretes protein toxins that mediate bacterial antagonism. Two T7SS toxins have been identified in Staphylococcus aureus, EsaD a nuclease toxin that is counteracted by the EsaG immunity protein, and TspA, which has membrane depolarising activity and is neutralised by TsaI. Both toxins are polymorphic, and strings of non-identical esaG and tsaI immunity genes are encoded in all S. aureus strains. To investigate the evolution of esaG repertoires, we analysed the sequences of the tandem esaG genes and their encoded proteins. We identified three blocks of high sequence similarity shared by all esaG genes and identified evidence of extensive recombination events between esaG paralogues facilitated through these conserved sequence blocks. Recombination between these blocks accounts for loss and expansion of esaG genes in S. aureus genomes and we identified evidence of such events during evolution of strains in clonal complex 8. TipC, an immunity protein for the TelC lipid II phosphatase toxin secreted by the streptococcal T7SS, is also encoded by multiple gene paralogues. Two blocks of high sequence similarity locate to the 5' and 3' end of tipC genes, and we found strong evidence for recombination between tipC paralogues encoded by Streptococcus mitis BCC08. By contrast, we found only a single homology block across tsaI genes, and little evidence for intergenic recombination within this gene family. We conclude that homologous recombination is one of the drivers for the evolution of T7SS immunity gene clusters.


Asunto(s)
Infecciones Estafilocócicas , Sistemas de Secreción Tipo VII , Bacterias/metabolismo , Recombinación Homóloga , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Sistemas de Secreción Tipo VII/genética , Sistemas de Secreción Tipo VII/metabolismo
19.
Microbiology (Reading) ; 168(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35943884

RESUMEN

The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex ß-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called ß-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of ß-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.


Asunto(s)
Penicilinas , beta-Lactamasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Inhibidores de beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
20.
Access Microbiol ; 4(11)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36910860

RESUMEN

RN6390 is a commonly used laboratory strain of Staphylococcus aureus derived from NCTC8325. In this study, we sequenced the RN6390 genome and compared it to available genome sequences for NCTC8325. We confirmed that three prophages, Φ11, Φ12 and Φ13, which are present in NCTC8325 are absent from the genome of RN6390, consistent with the successive curing events leading to the generation of this strain. However, we noted that a separate prophage is present in RN6390 that is not found in NCTC8325. Two separate genome sequences have been deposited for the parental strain, NCTC8325. Analysis revealed several differences between these sequences, in particular, between the copy number of esaG genes, which encode immunity proteins to the type VII secreted anti-bacterial toxin, EsaD. Single nucleotide polymorphisms were also detected in ribosomal RNA genes and genes encoding microbial surface components recognizing adhesive matrix molecules (MSCRAMM) between the two NCTC8325 sequences. Comparing each NCTC8325 sequence to other strains in the RN6390 lineage confirmed that sequence assembly errors in the earlier NCTC8325 sequence are the most likely explanation for most of the differences observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...