Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 13(29): 12587-12593, 2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34259293

RESUMEN

Advances in cylindrical nanowires for 3D information technologies profit from intrinsic curvature that introduces significant differences with regards to planar systems. A model is proposed to control the stochastic and deterministic coding of remanent 3D complex vortex configurations in designed multilayered (magnetic/non-magnetic) cylindrical nanowires. This concept, introduced by micromagnetic simulations, is experimentally confirmed by magnetic imaging in FeCo/Cu multilayered nanowires. The control over the random/deterministic vortex states configurations is achieved by a suitable geometrical interface tilting of almost non-interacting FeCo segments with respect to the nanowire axis, together with the relative orientation of the perpendicular magnetic field. The proper design of the segments' geometry (e.g. tilting) in cylindrical nanowires opens multiple opportunities for advanced nanotechnologies in 3D magnetic networks.

2.
Nanoscale ; 12(2): 1155-1163, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31850433

RESUMEN

Isothermal tuning of both the magnitude and the sign of the bias field has been achieved by exploiting a new phenomenon in a system consisting of two orthogonally coupled films: SmCo5 (out-of-plane anisotropy)-CoFeB (in-plane anisotropy). This has been achieved by using the large dipolar magnetic field of the SmCo5 layer resulting in the pinning of one of the branches of the hysteresis loop (either the ascending or the descending branch) at a fixed field value while the second one is modulated along the field axis by varying the orientation of an externally applied magnetic field. This means the possibility of controlling the sign of the bias field in a manner not reported to date. Moreover, modulation of the bias field strength is possible by varying the thickness of a spacer between the SmCo5 and CoFeB layers. This study shows that the observed phenomena find their origin in the competition between the artificially induced anisotropies in both layers, resulting in a reversible chiral bias effect that allows the selection of the initial sign of the bias field by switching (upwards/downwards) the magnetization in the SmCo5 film.

3.
Sci Rep ; 9(1): 9010, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227798

RESUMEN

"Domain wall traps" have been engineered and well-exploited in nanostrips by creating a geometrical trapping site, e.g. a single notch along a stripe, compared to diameter-modulated (DM) cylindrical magnetic nanowires (NWs) where multi-segmented DM-NWs have been generally studied. Here, we report our systematic study on the magnetization behavior, domain wall structure and its nucleation/propagation in tri-segmented diameter-modulated Ni nanowires, a simple system to investigate the magnetization reversal as function of segment geometry and lay-out order. We find out that the magnetization behavior of single Ni DM-NWs exhibits the significance of positional ordering of thick and thin segments, distinguished by two distinct geometries including: dumbbell-type (type I) and rolling pin-type (type II). Based on experimental and theoretical simulations, it was evidenced that the wide-narrow junctions create trap sites for domain walls where the narrow segment restricts their motion. This type of geometrically engineered nanowires exhibit potential efficiency for future novel spintronic devices in particular when assembled in arrays of DM-NWs as a practical three-dimensional memory device.

4.
Sci Technol Adv Mater ; 19(1): 465-473, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29887921

RESUMEN

Searching for high-performance permanent magnets components with no limitation in shape and dimensions is highly desired to overcome the present design and manufacturing restrictions, which affect the efficiency of the final devices in energy, automotive and aerospace sectors. Advanced 3D-printing of composite materials and related technologies is an incipient route to achieve functional structures avoiding the limitations of traditional manufacturing. Gas-atomized MnAlC particles combined with polymer have been used in this work for fabricating scalable rare earth-free permanent magnet composites and extruded flexible filaments with continuous length exceeding 10 m. Solution casting has been used to synthesize homogeneous composites with tuned particles content, made of a polyethylene (PE) matrix embedding quasi-spherical particles of the ferromagnetic τ-MnAlC phase. A maximum filling factor of 86.5 and 72.3% has been obtained for the composite and the filament after extrusion, respectively. The magnetic measurements reveal no deterioration of the properties of the MnAlC particles after the composite synthesis and filament extrusion. The produced MnAlC/PE materials will serve as precursors for an efficient and scalable design and fabrication of end-products by different processing techniques (polymerized cold-compacted magnets and 3D-printing, respectively) in view of technological applications (from micro electromechanical systems to energy and transport applications).

5.
ACS Nano ; 12(6): 5932-5939, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29812903

RESUMEN

The unidirectional motion of information carriers such as domain walls in magnetic nanostrips is a key feature for many future spintronic applications based on shift registers. This magnetic ratchet effect has so far been achieved in a limited number of complex nanomagnetic structures, for example, by lithographically engineered pinning sites. Here we report on a simple remagnetization ratchet originated in the asymmetric potential from the designed increasing lengths of magnetostatically coupled ferromagnetic segments in FeCo/Cu cylindrical nanowires. The magnetization reversal in neighboring segments propagates sequentially in steps starting from the shorter segments, irrespective of the applied field direction. This natural and efficient ratchet offers alternatives for the design of three-dimensional advanced storage and logic devices.

6.
Nanotechnology ; 27(43): 435705, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27658858

RESUMEN

Series of high hexagonally ordered compositionally modulated nanowire arrays, with different Cu layer and FeCoCu segment thicknesses and a constant diameter of 35 nm, were fabricated by electroplating from a single electrolytic bath into anodic aluminum oxide membranes. The objective of the study was to determine the influence of ferromagnetic (FM) segment and non-ferromagnetic (NFM) layer thickness on the magnetic properties, particularly coercivity and magnetic interactions. First-order reversal curve (FORC) measurements and simulations were performed to quantify the effect of the inter-/intra-nanowire magnetostatic interactions on the coercivity and interaction field distributions. The FORC coercivity increases for a thick NFM layer and long FM segments due to decoupling of the the FM segments and the increased shape anisotropy, respectively. On the other hand, the interaction field presents a parallel strong reduction for a thick NFM layer and thin FM segments, which is ascribed to a similar NFM/FM thickness ratio and degree of FM segment decoupling along the nanowire.

7.
Nanotechnology ; 27(36): 365704, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27479573

RESUMEN

The use of 3d transition metal-based magnetic nanowires (NWs) for permanent magnet applications requires large magnetocrystalline anisotropy energy (MAE), which in combination with the NWs' magnetic shape anisotropy yields magnetic hardening and an enhancement of the magnetic energy product. Here, we report on the significant increase in MAE by 125 kJ m(-3) in Fe30Co70 NWs with diameters of 20-150 nm embedded in anodic aluminum oxide templates by adding 5 at.% Cu and subsequent annealing at 900 K. Ferromagnetic resonance (FMR) reveals that this enhancement of MAE is twice as large as the enhancement of MAE in annealed, but undoped NWs. X-ray diffraction (XRD) analysis suggests that upon annealing the immiscible Cu in FeCo NWs causes a crystal reorientation with respect to the NW axis with a considerable distortion of the bcc FeCo lattice. This strain is most likely the origin of the strongly enhanced MAE.

8.
Nanoscale Res Lett ; 11(1): 86, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26873261

RESUMEN

The effect of arrays of nanometer scale pores on the magnetic properties of thin films has been analyzed. Particularly, we investigated the influence of the out-of-plane magnetization component created by the nanopores on the in-plane magnetic behavior of patterned hard/soft magnetic thin films in antidot morphology. Its influence on the coupling in Co/Py bilayers of few tens of nanometer thick is compared for disordered and ordered antidots of 35-nm diameter. The combination of magneto-optical Kerr effect (MOKE) and first-order reversal curve (FORC) technique allows probing the effects of the induced perpendicular magnetization component on the bilayer magnetic behavior, while magnetic force microscopy (MFM) is used to image it. We found that ordered antidots yield a stronger out-of-plane component than disordered ones, influencing in a similar manner the hard layer global in-plane magnetic behavior if with a thin or without soft layer. However, its influence changes with a thicker soft layer, which may be an indication of a weaker coupling.

9.
Nanotechnology ; 26(46): 461001, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26501722

RESUMEN

Control over the magnetization reversal process of nanowires is essential to current advances in modern spintronic media and magnetic data storage. Much effort has been devoted to permalloy nanostrips with rectangular cross section and vanishing crystalline anisotropy. Our aim was to unveil and control the reversal process in FeCoCu nanowires with significant anisotropy and circular cross section with tailored periodical modulations in diameter. Magneto-optical Kerr effect measurements and their angular dependence performed on individual nanowires together with their analysis allow us to conclude that the demagnetization process takes place due to the propagation of a single vortex domain wall which is eventually pinned at given modulations with slightly higher energy barrier. In addition these results create new expectations for further controlling of the propagation of single and multiple domain walls.

10.
Nanotechnology ; 26(41): 415704, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26404670

RESUMEN

3d transition metal-based magnetic nanowires (NWs) are currently considered as potential candidates for alternative rare-earth-free alloys as novel permanent magnets. Here, we report on the magnetic hardening of Fe30Co70 nanowires in anodic aluminium oxide templates with diameters of 20 nm and 40 nm (length 6 µm and 7.5 µm, respectively) by means of magnetic pinning at the tips of the NWs. We observe that a 3-4 nm naturally formed ferrimagnetic FeCo oxide layer covering the tip of the FeCo NW increases the coercive field by 20%, indicating that domain wall nucleation starts at the tip of the magnetic NW. Ferromagnetic resonance (FMR) measurements were used to quantify the magnetic uniaxial anisotropy energy of the samples. Micromagnetic simulations support our experimental findings, showing that the increase of the coercive field can be achieved by controlling domain wall nucleation using magnetic materials with antiferromagnetic exchange coupling, i.e. antiferromagnets or ferrimagnets, as a capping layer at the nanowire tips.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...