Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39355934

RESUMEN

Highly emissive Ag2S nanocrystals (NCs) passivated with a gradated shell incorporating Se and Zn were synthesized in air, and the temperature dependence of their photoluminescence quantum yield (PLQY) was quantified in both organic and aqueous media at ∼1200 nm. The relevance of this parameter, measured at physiological temperatures, is highlighted for applications that rely on the near infrared (NIR) photoluminescence of NCs, such as deep NIR imaging or luminescence nanothermometry. Hyperspectral NIR imaging shows that Ag2S-based NCs with a PLQY in organic media of about 10% are inefficient for imaging at 40 °C through 20 mm thick tissue with low laser irradiation power densities. In contrast, water-transferred Ag2S-based NCs with an initial PLQY of 2% in water exhibit improved robustness against temperature changes, enabling improved imaging performance.

2.
ACS Appl Mater Interfaces ; 15(27): 32162-32176, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37390112

RESUMEN

Magnetic iron oxide mesocrystals have been reported to exhibit collective magnetic properties and consequently enhanced heating capabilities under alternating magnetic fields. However, there is no universal mechanism to fully explain the formation pathway that determines the particle diameter, crystal size, and shape of these mesocrystals and their evolution along with the reaction. In this work, we have analyzed the formation of cubic magnetic iron oxide mesocrystals by thermal decomposition in organic media. We have observed that a nonclassical pathway leads to mesocrystals via the attachment of crystallographically aligned primary cubic particles and grows through sintering with time to achieve a sizable single crystal. In this case, the solvent 1-octadecene and the surfactant agent biphenyl-4-carboxylic acid seem to be the key parameters to form cubic mesocrystals as intermediates of the reaction in the presence of oleic acid. Interestingly, the magnetic properties and hyperthermia efficiency of the aqueous suspensions strongly depend on the degree of aggregation of the cores forming the final particle. The highest saturation magnetization and specific absorption rate values were found for the less aggregated mesocrystals. Thus, these cubic magnetic iron oxide mesocrystals stand out as an excellent alternative for biomedical applications with their enhanced magnetic properties.

3.
J Phys Condens Matter ; 35(33)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37168002

RESUMEN

Two-dimensional (2D) layered group IV-VI semiconductors attract great interest due to their potential applications in nanoelectronics. Depending on the dimensionality, different phases of the same material can present completely different electronic and optical properties, expanding its applications. Here, we present a combined experimental and theoretical study of the atomic structure and electronic properties of epitaxial SnSe structures grown on a metallic Au(111) substrate, forming almost defect-free 2D layers. We describe a coverage-dependent transition from a metallicß-SnSe to a semiconductingα-SnSe phase. The combination of scanning tunneling microscopy/spectroscopy, non-contact atomic force microscopy, x-ray photoelectron spectroscopy/diffraction and angle-resolved photoemission spectroscopy, complemented by density functional theory, provides a comprehensive study of the geometric and electronic structure of both phases. Our work demonstrates the possibility to grow two distinct SnSe phases on Au(111) with high quality and on a large scale. The strong interaction with the substrate allows the stabilization of the previously experimentally unreportedß-SnSe, while the ultra-thin films of orthorhombicα-SnSe are structurally and electronically equivalent to bulk SnSe.

4.
Nanomaterials (Basel) ; 9(11)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652774

RESUMEN

Magnetite nanoparticles (Fe3O4) of 12 ± 4 nm diameter are electrochemically synthesized for the adsorption and magnetic harvesting of Cr(VI) from contaminated simulated solutions. The removal of Cr(VI) from aqueous media follows pseudo-second-order kinetics. The adsorption efficiency is evaluated in three different scenarios. In standard conditions, i.e., at room temperature; in a thermal bath working at 60 °C, where the temperature could be considered homogeneous within the solution; and finally, under magnetic induction heating, while adjusting the frequency and magnetic field used to attain the same temperature as in the bath experiments. Two benefits of using a magnetic inductor are demonstrated. First, the removal efficiency is almost doubled in comparison to that of the room temperature experiments, and it is higher by 30% compared to that of the bath setup. At the same time as the adsorption occurs, a redox reaction occurs on the surface of the nanoparticles, and Cr(VI), the predominant species in the contaminated solution, is significantly reduced to Cr(III). Through X-ray photoelectron spectroscopy, it is shown that a greater reduction effect is achieved when working in induction conditions than at room temperature. This is the first time that this synergistic effect using magnetic induction heating has been demonstrated for heavy metal decontamination of wastewater.

5.
Nanoscale ; 11(36): 16767-16772, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31322636

RESUMEN

The ageing of graphene is an important issue that limits its technological applications. Capping layers are a good option for circumventing this problem. In this work, we propose the use of ultra-thin NaCl films as easily-removable protective layers. We have carried out a detailed characterization of the NaCl/graphene interface on metal substrates, namely Cu(111) and Ir(111), by means of complementary microscopy, electron diffraction and spectroscopic techniques. Interestingly, we show that NaCl neither interacts in a chemical way with graphene nor intercalates through it. We demonstrate that the NaCl film is stable under ambient conditions, protecting the graphene surface from oxidation. In addition, after removing the protective layer, graphene remains intact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...