Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35216177

RESUMEN

The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.


Asunto(s)
Proteínas Anfibias/farmacología , Anfibios/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/química , Virus ADN/efectos de los fármacos , Virus ARN/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas Anfibias/química , Proteínas Anfibias/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Antivirales/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Lípidos/química , SARS-CoV-2/efectos de los fármacos , Células Vero
2.
Crit Care ; 25(1): 217, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34167575

RESUMEN

BACKGROUND: The viral load of asymptomatic SAR-COV-2 positive (ASAP) persons has been equal to that of symptomatic patients. On the other hand, there are no reports of ST-elevation myocardial infarction (STEMI) outcomes in ASAP patients. Therefore, we evaluated thrombus burden and thrombus viral load and their impact on microvascular bed perfusion in the infarct area (myocardial blush grade, MBG) in ASAP compared to SARS-COV-2 negative (SANE) STEMI patients. METHODS: This was an observational study of 46 ASAP, and 130 SANE patients admitted with confirmed STEMI treated with primary percutaneous coronary intervention and thrombus aspiration. The primary endpoints were thrombus dimension + thrombus viral load effects on MBG after PPCI. The secondary endpoints during hospitalization were major adverse cardiovascular events (MACEs). MACEs are defined as a composite of cardiovascular death, nonfatal acute AMI, and heart failure during hospitalization. RESULTS: In the study population, ASAP vs. SANE showed a significant greater use of GP IIb/IIIa inhibitors and of heparin (p < 0.05), and a higher thrombus grade 5 and thrombus dimensions (p < 0.05). Interestingly, ASAP vs. SANE patients had lower MBG and left ventricular function (p < 0.001), and 39 (84.9%) of ASAP patients had thrombus specimens positive for SARS-COV-2. After PPCI, a MBG 2-3 was present in only 26.1% of ASAP vs. 97.7% of SANE STEMI patients (p < 0.001). Notably, death and nonfatal AMI were higher in ASAP vs. SANE patients (p < 0.05). Finally, in ASAP STEMI patients the thrombus viral load was a significant determinant of thrombus dimension independently of risk factors (p < 0.005). Thus, multiple logistic regression analyses evidenced that thrombus SARS-CoV-2 infection and dimension were significant predictors of poorer MBG in STEMI patients. Intriguingly, in ASAP patients the female vs. male had higher thrombus viral load (15.53 ± 4.5 vs. 30.25 ± 5.51 CT; p < 0.001), and thrombus dimension (4.62 ± 0.44 vs 4.00 ± 1.28 mm2; p < 0.001). ASAP vs. SANE patients had a significantly lower in-hospital survival for MACE following PPCI (p < 0.001). CONCLUSIONS: In ASAP patients presenting with STEMI, there is strong evidence towards higher thrombus viral load, dimension, and poorer MBG. These data support the need to reconsider ASAP status as a risk factor that may worsen STEMI outcomes.


Asunto(s)
COVID-19/complicaciones , Trombosis Coronaria/virología , Corazón/fisiopatología , Microcirculación/fisiología , Infarto del Miocardio/fisiopatología , Anciano , Análisis de Varianza , Infecciones Asintomáticas/epidemiología , COVID-19/epidemiología , Estudios de Cohortes , Angiografía Coronaria/métodos , Trombosis Coronaria/epidemiología , Ecocardiografía/métodos , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Infarto del Miocardio/epidemiología
3.
Int J Biol Macromol ; 162: 882-893, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32569683

RESUMEN

Conformational changes of viral glycoproteins govern the fusion of viral and cellular membranes in the entry of enveloped viruses. Peptides mimicking domains of viral glycoproteins are apt to interfere with the fusion event, likely hampering the conformational rearrangements from the pre- to the post-fusion structures. We previously developed a peptide sequence with a high potential to inhibit the entry of herpes simplex type 1, which was able to trap glycoprotein B at an intermediate stage, arresting fusion. We propose that similarly to other viruses, membrane targeting through cholesterol conjugation may potently block fusion. The peptide conjugated to polyethylenglycol and cholesterol interacts with viral and cell membranes thanks to the presence of cholesterol and blocks the conformational rearrangements of the glycoprotein B. Here, we also probed the effect of the linker (polyethylenglycol) length on the activity. By targeting the peptide gBh1m to the membranes where fusion occurs and by engineering sequences with increased binding affinity for gB we have enhanced the antiviral potency of our prototype inhibitors. Our results provide proof of concept for the application of cholesterol tagging to develop inhibitors of HSV-1.


Asunto(s)
Antivirales/farmacología , Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 1/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Péptidos/farmacología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Internalización del Virus/efectos de los fármacos , Animales , Chlorocebus aethiops , Colesterol/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Conformación Proteica , Células Vero
5.
Oncotarget ; 9(63): 32182-32190, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30181808

RESUMEN

INTRODUCTION: An innovative method, known as sonoporation, was used to induce the expression of silenced genes, such as (but not restricted to) TRAIL and p53, in liver cancer cells (HepG2). The principal aim of the present study was the re-activation of silenced apoptotic pathways in liver cancer models, by using diagnostic synovial microbubble as plasmid gene delivery tools in combination with epigenetic treatments. MATERIAL AND METHODS: HepG2 cells were used as a liver cancer model. Microbubbles (Sonovue®) were chosen as gene deliver system in combination with the sonoporation approach. Plasmid pEGFP-TRAIL and pEGFP-p53 were selected and propagated in Escherichia coli grown in LB broth, in order to obtain the necessary amount. RESULTS: Sonoporation was induced by using transducer (Sonitron 2000) and, among the several conditions tested, 3 MHz, 51% Duty Cycle, and 5 W/cm2, 30 s resulted as the best parameters. Data collected showed a dose dependent effect in terms of output energy. A transfection efficacy of 30 - 50% was achieved and recombinant gene expression induced apoptotic effects. In order to increase efficacy, we used the histone deacetylase inhibitor (HDACi, entinostat) MS-275, able to activate TRAIL and thus inducing a stronger pro-apoptotic effect in combination with TRAIL-gene re-expression. CONCLUSION: For the first time, it was shown the possibility to induce the exogenous expression of the pro-apoptotic gene TRAIL and p53 in a liver cancer HepG2 cells via a sonoporation procedure. The epigenetic treatment using HDACi was able to increase the pro-apoptotic effects of the gene therapy.

6.
Eur J Med Chem ; 139: 750-761, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-28863356

RESUMEN

In this study we designed and synthesized a new library of antimicrobial peptides correlated to [Pro3,DLeu9]TL 1, a temporin L derivative devoid of cytolytic effects in vitro, and investigated the correlation between the α-helical content of the compounds and their antibacterial, cytotoxic and hemolytic activities. We systematically replaced Gly in position 10 of reference peptide with several amino acids. Structure-activity relationship studies of these analogues were performed by means of antimicrobial and cytotoxicity assays along with CD spectroscopy analyses. NMR analysis was also accomplished for compound 10. As well, the most promising peptides were additionally evaluated for their activity against some clinical strains isolated from human skin and for their mechanism of action by studying the kinetics of membrane perturbation of some representative microbial strains. We identified novel analogues with interesting properties that make them attractive lead compounds for potential topical applications.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Glicina/farmacología , Proteínas/farmacología , Adulto , Antibacterianos/síntesis química , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Muerte Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Hongos/efectos de los fármacos , Glicina/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Proteínas/síntesis química , Proteínas/química , Relación Estructura-Actividad
7.
Molecules ; 20(5): 8856-74, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25993417

RESUMEN

Multi-drug resistance is a growing problem in the treatment of infectious diseases and the widespread use of broad-spectrum antibiotics has produced antibiotic resistance for many human bacterial pathogens. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs, but unfortunately infectious diseases continue to be a major health burden worldwide. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. Currently nanotechnology and nanomaterials are fully integrated in common applications and objects that we use every day. In addition, the silver nanoparticles are attracting much interest because of their potent antibacterial activity. Many studies have also shown an important activity of silver nanoparticles against bacterial biofilms. This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials.


Asunto(s)
Antiinfecciosos/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Plata/administración & dosificación , Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Enfermedades Transmisibles/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple , Humanos , Nanomedicina/métodos , Plata/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...