Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229062

RESUMEN

The hippocampus is a structure in the medial temporal lobe which serves multiple cognitive functions. While important, the development of the hippocampus in the formative period of childhood and adolescence has not been extensively investigated, with most contemporary research focusing on macrostructural measures of volume. Thus, there has been little research on the development of the micron-scale structures (i.e., microstructure) of the hippocampus, which engender its cognitive functions. The current study examined age-related changes of hippocampal microstructure using diffusion MRI data acquired with an ultra-strong gradient (300 mT/m) MRI scanner in a sample of children and adolescents (N=88; 8-19 years). Surface-based hippocampal modelling was combined with established microstructural approaches, such as Diffusion Tensor Imaging (DTI) and Neurite Orientation Dispersion Density Imaging (NODDI), and a more advanced gray matter diffusion model Soma And Neurite Density Imaging (SANDI). No significant changes in macrostructural measures (volume, gyrification, and thickness) were found between 8-19 years, while significant changes in microstructure measures related to neurites (from NODDI and SANDI), soma (from SANDI), and mean diffusivity (from DTI) were found. In particular, there was a significant increase across age in neurite MR signal fraction and a significant decrease in extracellular MR signal fraction and mean diffusivity across the hippocampal subfields and long-axis. A significant negative correlation between age and MR apparent soma radius was found in the subiculum and CA1 throughout the anterior and body of the hippocampus. Further surface-based analyses uncovered variability in age-related microstructural changes between the subfields and long-axis, which may reflect ostensible developmental differences along these two axes. Finally, correlation of hippocampal surfaces representing age-related changes of microstructure with maps derived from histology allowed for postulation of the potential underlying microstructure that diffusion changes across age may be capturing. Overall, distinct neurite and soma developmental profiles in the human hippocampus during late childhood and adolescence are reported for the first time.

2.
bioRxiv ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39131383

RESUMEN

Neuroanatomical changes to the cortex during adolescence have been well documented using MRI, revealing ongoing cortical thinning and volume loss with age. However, the underlying cellular mechanisms remain elusive with conventional neuroimaging. Recent advances in MRI hardware and new biophysical models of tissue informed by diffusion MRI data hold promise for identifying the cellular changes driving these morphological observations. This study used ultra-strong gradient MRI to obtain high-resolution, in vivo estimates of cortical neurite and soma microstructure in sample of typically developing children and adolescents. Cortical neurite signal fraction, attributed to neuronal and glial processes, increased with age (mean R2 fneurite=.53, p<3.3e-11, 11.91% increase over age), while apparent soma radius decreased (mean R2 Rsoma=.48, p<4.4e-10, 1% decrease over age) across domain-specific networks. To complement these findings, developmental patterns of cortical gene expression in two independent post-mortem databases were analysed. This revealed increased expression of genes expressed in oligodendrocytes, and excitatory neurons, alongside a relative decrease in expression of genes expressed in astrocyte, microglia and endothelial cell-types. Age-related genes were significantly enriched in cortical oligodendrocytes, oligodendrocyte progenitors and Layer 5-6 neurons (pFDR<.001) and prominently expressed in adolescence and young adulthood. The spatial and temporal alignment of oligodendrocyte cell-type gene expression with neurite and soma microstructural changes suggest that ongoing cortical myelination processes contribute to adolescent cortical development. These findings highlight the role of intra-cortical myelination in cortical maturation during adolescence and into adulthood.

3.
NMR Biomed ; : e5229, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191529

RESUMEN

Diffusion-weighted MRI (dMRI) is universally recommended for the detection and classification of prostate cancer (PCa), with PI-RADS recommendations to acquire b-values of ≥1.4 ms/µm2. However, clinical dMRI suffers from a low signal-to-noise ratio (SNR) as the consequence of prolonged echo times (TEs) attributable to the limited gradient power in the range of 40-80 mT/m. To overcome this, MRI systems with strong gradients have been designed but so far have mainly been applied in the brain. The aim of this work was to assess the feasibility, data quality, SNR and contrast-to-noise ratio (CNR) of measurements in PCa with a 300 mT/m whole-body system. A cohort of men without and with diagnosed PCa were imaged on a research-only 3T Connectom Siemens MRI system equipped with a gradient amplitude of 300 mT/m. dMRI at high b-values were acquired using high gradient amplitudes and compared with gradient capabilities mimicking clinical systems. Data artefacts typically amplified with stronger gradients were assessed and their correction evaluated. The SNR gains and lesion-to-healthy tissue CNR were statistically tested investigating the effect of protocol and b-value. The diagnostic quality of the images for different dMRI protocols was assessed by an experienced radiologist using a 5-point Likert scale and an adapted PI-QUAL scoring system. The strong gradients for prostate dMRI allowed a significant gain in SNR per unit time compared with clinical gradients. Furthermore, a 1.6-2.1-fold increase in CNR was observed. Despite the more pronounced artefacts typically associated with strong gradients, a satisfactory correction could be achieved. Smoother and less biased parameter maps were obtained with protocols at shorter TEs. The results of this study show that dMRI in PCa with a whole-body 300-mT/m scanner is feasible without a report of physiological effects, SNR and CNR can be improved compared with lower gradient strengths, and artefacts do not negate the benefits of strong gradients and can be ameliorated. This assessment provides the first essential step towards unveiling the full potential of cutting-edge scanners, now increasingly becoming available, to advance early detection and diagnostic precision.

4.
BMJ Open ; 14(7): e082161, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089721

RESUMEN

INTRODUCTION: Huntington's disease (HD) is an inherited neurodegenerative disease causing progressive cognitive and motor decline, largely due to basal ganglia (BG) atrophy. Rhythmic training offers promise as therapy to counteract BG-regulated deficits. We have developed HD-DRUM, a tablet-based app to enhance movement synchronisation skills and improve cognitive and motor abilities in people with HD. This paper outlines a randomised controlled unblinded trial protocol to determine the feasibility of a larger effectiveness trial for HD-DRUM. Additionally, the trial investigates cognitive and motor function measures, along with brain microstructure, aiming to advance our understanding of the neural mechanisms underlying training effects. METHODS, DESIGN AND ANALYSIS: 50 individuals with HD, confirmed by genetic testing, and a Total Functional Capacity (TFC) score of 9-13, will be recruited into a two-arm randomised controlled feasibility trial. Consenting individuals with HD will be randomised to the intervention group, which entails 8 weeks of at-home usage of HD-DRUM or a usual-activity control group. All participants will undergo cognitive and motor assessments, alongside ultra-strong gradient (300 mT/m) brain microstructural MRI before and after the 8-week period. The feasibility assessment will encompass recruitment, retention, adherence and acceptability of HD-DRUM following prespecified criteria. The study will also evaluate variations in cognitive and motor performance and brain microstructure changes resulting from the intervention to determine effect size estimates for future sample size calculations. ETHICS AND DISSEMINATION: The study has received favourable ethical opinion from the Wales Research Ethics Committee 2 (REC reference: 22/WA/0147) and is sponsored by Cardiff University (SPON1895-22) (Research Integrity, Governance and Ethics Team, Research & Innovation Services, Cardiff University, second Floor, Lakeside Building, University Hospital of Wales, Cardiff, CF14 4XW). Findings will be disseminated to researchers and clinicians in peer-reviewed publications and conference presentations, and to participants, carers and the general public via newsletters and public engagement activities. Data will be shared with the research community via the Enroll-HD platform. TRIAL REGISTRATION NUMBER: ISRCTN11906973.


Asunto(s)
Estudios de Factibilidad , Enfermedad de Huntington , Adulto , Femenino , Humanos , Masculino , Cognición , Terapia por Ejercicio/métodos , Enfermedad de Huntington/complicaciones , Enfermedad de Huntington/terapia , Imagen por Resonancia Magnética , Aplicaciones Móviles , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
Sci Rep ; 14(1): 9848, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684744

RESUMEN

Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (fsoma)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI fsoma with clinical and biological measures in pwMS. We applied a simplified version of SANDI to a clinical scanners. We then provided evidence that pwMS exhibited an overall decrease in cortical SANDI fsoma compared to healthy subjects, suggesting global degenerative processes compatible with neuronal loss. On the other hand, we have found that progressive pwMS showed a higher SANDI fsoma in the outer part of the cortex compared to relapsing-remitting pwMS, possibly supporting current pathological knowledge of increased innate inflammatory cells in these regions. A similar finding was obtained in subpial lesions in relapsing-remitting patients, reflecting existing pathological data in these lesion types. A significant correlation was found between SANDI fsoma and serum neurofilament light chain-a biomarker of inflammatory axonal damage-suggesting a relationship between SANDI soma fraction and inflammatory processes in pwMS again. Overall, our data show that SANDI fsoma is a promising biomarker to monitor changes in cellularity compatible with neurodegeneration and neuroinflammation in the cortex of MS patients.


Asunto(s)
Esclerosis Múltiple , Humanos , Femenino , Adulto , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen de Difusión por Resonancia Magnética/métodos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Biomarcadores , Neuritas/patología , Inflamación/patología , Inflamación/diagnóstico por imagen
7.
Magn Reson Med ; 91(3): 860-885, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946584

RESUMEN

Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Consenso , Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Difusión , Imagen de Difusión por Resonancia Magnética/métodos
8.
Appl Magn Reson ; 54(11-12): 1571-1588, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38037641

RESUMEN

Multidimensional Magnetic Resonance Imaging (MRI) is a versatile tool for microstructure mapping. We use a diffusion weighted inversion recovery spin echo (DW-IR-SE) sequence with spiral readouts at ultra-strong gradients to acquire a rich diffusion-relaxation data set with sensitivity to myelin water. We reconstruct 1D and 2D spectra with a two-step convex optimization approach and investigate a variety of multidimensional MRI methods, including 1D multi-component relaxometry, 1D multi-component diffusometry, 2D relaxation correlation imaging, and 2D diffusion-relaxation correlation spectroscopic imaging (DR-CSI), in terms of their potential to quantify tissue microstructure, including the myelin water fraction (MWF). We observe a distinct spectral peak that we attribute to myelin water in multi-component T1 relaxometry, T1-T2 correlation, T1-D correlation, and T2-D correlation imaging. Due to lower achievable echo times compared to diffusometry, MWF maps from relaxometry have higher quality. Whilst 1D multi-component T1 data allows much faster myelin mapping, 2D approaches could offer unique insights into tissue microstructure and especially myelin diffusion.

9.
Front Neuroinform ; 17: 1211188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637472

RESUMEN

Quantification of microglial activation through morphometric analysis has long been a staple of the neuroimmunologist's toolkit. Microglial morphological phenomics can be conducted through either manual classification or constructing a digital skeleton and extracting morphometric data from it. Multiple open-access and paid software packages are available to generate these skeletons via semi-automated and/or fully automated methods with varying degrees of accuracy. Despite advancements in methods to generate morphometrics (quantitative measures of cellular morphology), there has been limited development of tools to analyze the datasets they generate, in particular those containing parameters from tens of thousands of cells analyzed by fully automated pipelines. In this review, we compare and critique the approaches using cluster analysis and machine learning driven predictive algorithms that have been developed to tackle these large datasets, and propose improvements for these methods. In particular, we highlight the need for a commitment to open science from groups developing these classifiers. Furthermore, we call attention to a need for communication between those with a strong software engineering/computer science background and neuroimmunologists to produce effective analytical tools with simplified operability if we are to see their wide-spread adoption by the glia biology community.

10.
Hum Brain Mapp ; 44(13): 4792-4811, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37461286

RESUMEN

Soma and neurite density image (SANDI) is an advanced diffusion magnetic resonance imaging biophysical signal model devised to probe in vivo microstructural information in the gray matter (GM). This model requires acquisitions that include b values that are at least six times higher than those used in clinical practice. Such high b values are required to disentangle the signal contribution of water diffusing in soma from that diffusing in neurites and extracellular space, while keeping the diffusion time as short as possible to minimize potential bias due to water exchange. These requirements have limited the use of SANDI only to preclinical or cutting-edge human scanners. Here, we investigate the potential impact of neglecting water exchange in the SANDI model and present a 10-min acquisition protocol that enables to characterize both GM and white matter (WM) on 3 T scanners. We implemented analytical simulations to (i) evaluate the stability of the fitting of SANDI parameters when diminishing the number of shells; (ii) estimate the bias due to potential exchange between neurites and extracellular space in such reduced acquisition scheme, comparing it with the bias due to experimental noise. Then, we demonstrated the feasibility and assessed the repeatability and reproducibility of our approach by computing microstructural metrics of SANDI with AMICO toolbox and other state-of-the-art models on five healthy subjects. Finally, we applied our protocol to five multiple sclerosis patients. Results suggest that SANDI is a practical method to characterize WM and GM tissues in vivo on performant clinical scanners.


Asunto(s)
Neuritas , Sustancia Blanca , Humanos , Reproducibilidad de los Resultados , Benchmarking , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Agua
11.
Cancers (Basel) ; 15(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37173965

RESUMEN

The aim of this work was to extend the VERDICT-MRI framework for modelling brain tumours, enabling comprehensive characterisation of both intra- and peritumoural areas with a particular focus on cellular and vascular features. Diffusion MRI data were acquired with multiple b-values (ranging from 50 to 3500 s/mm2), diffusion times, and echo times in 21 patients with brain tumours of different types and with a wide range of cellular and vascular features. We fitted a selection of diffusion models that resulted from the combination of different types of intracellular, extracellular, and vascular compartments to the signal. We compared the models using criteria for parsimony while aiming at good characterisation of all of the key histological brain tumour components. Finally, we evaluated the parameters of the best-performing model in the differentiation of tumour histotypes, using ADC (Apparent Diffusion Coefficient) as a clinical standard reference, and compared them to histopathology and relevant perfusion MRI metrics. The best-performing model for VERDICT in brain tumours was a three-compartment model accounting for anisotropically hindered and isotropically restricted diffusion and isotropic pseudo-diffusion. VERDICT metrics were compatible with the histological appearance of low-grade gliomas and metastases and reflected differences found by histopathology between multiple biopsy samples within tumours. The comparison between histotypes showed that both the intracellular and vascular fractions tended to be higher in tumours with high cellularity (glioblastoma and metastasis), and quantitative analysis showed a trend toward higher values of the intracellular fraction (fic) within the tumour core with increasing glioma grade. We also observed a trend towards a higher free water fraction in vasogenic oedemas around metastases compared to infiltrative oedemas around glioblastomas and WHO 3 gliomas as well as the periphery of low-grade gliomas. In conclusion, we developed and evaluated a multi-compartment diffusion MRI model for brain tumours based on the VERDICT framework, which showed agreement between non-invasive microstructural estimates and histology and encouraging trends for the differentiation of tumour types and sub-regions.

12.
Sci Rep ; 13(1): 6866, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37105986

RESUMEN

As part of the hypothalamic-pituitary adrenal (HPA) axis, the hypothalamus exerts pivotal influence on metabolic and endocrine homeostasis. With age, these processes are subject to considerable change, resulting in increased prevalence of physical disability and cardiac disorders. Yet, research on the aging human hypothalamus is lacking. To assess detailed hypothalamic microstructure in middle adulthood, 39 healthy participants (35-65 years) underwent comprehensive structural magnetic resonance imaging. In addition, we studied HPA axis dysfunction proxied by hair cortisol and waist circumference as potential risk factors for hypothalamic alterations. We provide first evidence of regionally different hypothalamic microstructure, with age effects in its anterior-superior subunit, a critical area for HPA axis regulation. Further, we report that waist circumference was related to increased free water and decreased iron content in this region. In age, hair cortisol was additionally associated with free water content, such that older participants with higher cortisol levels were more vulnerable to free water content increase than younger participants. Overall, our results suggest no general age-related decline in hypothalamic microstructure. Instead, older individuals could be more susceptible to risk factors of hypothalamic decline especially in the anterior-superior subregion, including HPA axis dysfunction, indicating the importance of endocrine and stress management in age.


Asunto(s)
Hidrocortisona , Sistema Hipotálamo-Hipofisario , Humanos , Adulto , Sistema Hipotálamo-Hipofisario/metabolismo , Hidrocortisona/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Hipotálamo/diagnóstico por imagen , Hipotálamo/metabolismo , Envejecimiento/fisiología , Agua/metabolismo
13.
Neuroimage ; 274: 120124, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37084927

RESUMEN

The brain has a unique macroscopic waste clearance system, termed the glymphatic system which utilises perivascular tunnels surrounded by astroglia to promote cerebrospinal-interstitial fluid exchange. Rodent studies have demonstrated a marked increase in glymphatic clearance during sleep which has been linked to a sleep-induced expansion of the extracellular space and concomitant reduction in intracellular volume. However, despite being implicated in the pathophysiology of multiple human neurodegenerative disorders, non-invasive techniques for imaging glymphatic clearance in humans are currently limited. Here we acquired multi-shell diffusion weighted MRI (dwMRI) in twenty-one healthy young participants (6 female, 22.3 ± 3.2 years) each scanned twice, once during wakefulness and once during sleep induced by a combination of one night of sleep deprivation and 10 mg of the hypnotic zolpidem 30 min before scanning. To capture hypothesised sleep-associated changes in intra/extracellular space, dwMRI were analysed using higher order diffusion modelling with the prediction that sleep-associated increases in interstitial (extracellular) fluid volume would result in a decrease in diffusion kurtosis, particularly in areas associated with slow wave generation at the onset of sleep. In line with our hypothesis, we observed a global reduction in diffusion kurtosis (t15=2.82, p = 0.006) during sleep as well as regional reductions in brain areas associated with slow wave generation during early sleep and default mode network areas that are highly metabolically active during wakefulness. Analysis with a higher-order representation of diffusion (MAP-MRI) further indicated that changes within the intra/extracellular domain rather than membrane permeability likely underpin the observed sleep-associated decrease in kurtosis. These findings identify higher-order modelling of dwMRI as a potential new non-invasive method for imaging glymphatic clearance and extend rodent findings to suggest that sleep is also associated with an increase in interstitial fluid volume in humans.


Asunto(s)
Encéfalo , Sistema Glinfático , Humanos , Femenino , Encéfalo/diagnóstico por imagen , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/fisiología , Imagen por Resonancia Magnética/métodos , Sueño , Imagen de Difusión por Resonancia Magnética
14.
Neuroimage ; 269: 119930, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36750150

RESUMEN

Temporal Diffusion Ratio (TDR) is a recently proposed dMRI technique (Dell'Acqua et al., proc. ISMRM 2019) which provides contrast between areas with restricted diffusion and areas either without restricted diffusion or with length scales too small for characterisation. Hence, it has a potential for informing on pore sizes, in particular the presence of large axon diameters or other cellular structures. TDR employs the signal from two dMRI acquisitions obtained with the same, large, b-value but with different diffusion gradient waveforms. TDR is advantageous as it employs standard acquisition sequences, does not make any assumptions on the underlying tissue structure and does not require any model fitting, avoiding issues related to model degeneracy. This work for the first time introduces and optimises the TDR method in simulation for a range of different tissues and scanner constraints and validates it in a pre-clinical demonstration. We consider both substrates containing cylinders and spherical structures, representing cell soma in tissue. Our results show that contrasting an acquisition with short gradient duration, short diffusion time and high gradient strength with an acquisition with long gradient duration, long diffusion time and low gradient strength, maximises the TDR contrast for a wide range of pore configurations. Additionally, in the presence of Rician noise, computing TDR from a subset (50% or fewer) of the acquired diffusion gradients rather than the entire shell as proposed originally further improves the contrast. In the last part of the work the results are demonstrated experimentally on rat spinal cord. In line with simulations, the experimental data shows that optimised TDR improves the contrast compared to non-optimised TDR. Furthermore, we find a strong correlation between TDR and histology measurements of axon diameter. In conclusion, we find that TDR has great potential and is a very promising alternative (or potentially complement) to model-based approaches for informing on pore sizes and restricted diffusion in general.


Asunto(s)
Axones , Imagen de Difusión por Resonancia Magnética , Ratas , Animales , Imagen de Difusión por Resonancia Magnética/métodos , Simulación por Computador , Procesamiento de Imagen Asistido por Computador/métodos
15.
Sci Rep ; 13(1): 2999, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810476

RESUMEN

This work presents a biophysical model of diffusion and relaxation MRI for prostate called relaxation vascular, extracellular and restricted diffusion for cytometry in tumours (rVERDICT). The model includes compartment-specific relaxation effects providing T1/T2 estimates and microstructural parameters unbiased by relaxation properties of the tissue. 44 men with suspected prostate cancer (PCa) underwent multiparametric MRI (mp-MRI) and VERDICT-MRI followed by targeted biopsy. We estimate joint diffusion and relaxation prostate tissue parameters with rVERDICT using deep neural networks for fast fitting. We tested the feasibility of rVERDICT estimates for Gleason grade discrimination and compared with classic VERDICT and the apparent diffusion coefficient (ADC) from mp-MRI. The rVERDICT intracellular volume fraction fic discriminated between Gleason 3 + 3 and 3 + 4 (p = 0.003) and Gleason 3 + 4 and ≥ 4 + 3 (p = 0.040), outperforming classic VERDICT and the ADC from mp-MRI. To evaluate the relaxation estimates we compare against independent multi-TE acquisitions, showing that the rVERDICT T2 values are not significantly different from those estimated with the independent multi-TE acquisition (p > 0.05). Also, rVERDICT parameters exhibited high repeatability when rescanning five patients (R2 = 0.79-0.98; CV = 1-7%; ICC = 92-98%). The rVERDICT model allows for accurate, fast and repeatable estimation of diffusion and relaxation properties of PCa sensitive enough to discriminate Gleason grades 3 + 3, 3 + 4 and ≥ 4 + 3.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética , Próstata/patología , Imagen de Difusión por Resonancia Magnética , Clasificación del Tumor
16.
Med Phys ; 50(5): 2900-2913, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36602230

RESUMEN

BACKGROUND: Quantitative imaging such as Diffusion-Weighted MRI (DW-MRI) can be exploited to non-invasively derive patient-specific tumor microstructure information for tumor characterization and local recurrence risk prediction in radiotherapy. PURPOSE: To characterize tumor microstructure according to proliferative capacity and predict local recurrence through microstructural markers derived from pre-treatment conventional DW-MRI, in skull-base chordoma (SBC) patients treated with proton (PT) and carbon ion (CIRT) radiotherapy. METHODS: Forty-eight patients affected by SBC, who underwent conventional DW-MRI before treatment and were enrolled for CIRT (n = 25) or PT (n = 23), were retrospectively selected. Clinically verified local recurrence information (LR) and histological information (Ki-67, proliferation index) were collected. Apparent diffusion coefficient (ADC) maps were calculated from pre-treatment DW-MRI and, from these, a set of microstructural parameters (cellular radius R, volume fraction vf, diffusion D) were derived by applying a fine-tuning procedure to a framework employing Monte Carlo simulations on synthetic cell substrates. In addition, apparent cellularity (ρapp ) was estimated from vf and R for an easier clinical interpretation. Histogram-based metrics (mean, median, variance, entropy) from estimated parameters were considered to investigate differences (Mann-Whitney U-test, α = 0.05) in estimated tumor microstructure in SBCs characterized by low or high cell proliferation (Ki-67). Recurrence-free survival analyses were also performed to assess the ability of the microstructural parameters to stratify patients according to the risk of local recurrence (Kaplan-Meier curves, log-rank test α = 0.05). RESULTS: Refined microstructural markers revealed optimal capabilities in discriminating patients according to cell proliferation, achieving best results with mean values (p-values were 0.0383, 0.0284, 0.0284, 0.0468, and 0.0088 for ADC, R, vf, D, and ρapp, respectively). Recurrence-free survival analyses showed significant differences between populations at high and low risk of local recurrence as stratified by entropy values of estimated microstructural parameters (p = 0.0110). CONCLUSION: Patient-specific microstructural information was non-invasively derived providing potentially useful tools for SBC treatment personalization and optimization in particle therapy.


Asunto(s)
Cordoma , Neoplasias de Cabeza y Cuello , Neoplasias de la Base del Cráneo , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Cordoma/diagnóstico por imagen , Cordoma/radioterapia , Cordoma/patología , Estudios Retrospectivos , Antígeno Ki-67 , Cráneo
17.
J Neurol ; 270(1): 433-445, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36153468

RESUMEN

BACKGROUND: Soma and neurite density imaging (SANDI) is a new biophysical model that incorporates soma in addition to neurite density, thus possibly providing more specific information about the complex pathological processes of multiple sclerosis (MS). PURPOSE: To discriminate the pathological abnormalities of MS white matter (WM) lesions, normal-appearing (NA) WM and cortex and to evaluate the associations among SANDI-derived measures, clinical disability, and conventional MRI variables. METHODS: Twenty healthy controls (HC) and 23 MS underwent a 3 T brain MRI. Using SANDI on diffusion-weighted sequence, the fractions of neurite (fneurite) and soma (fsoma) were assessed in WM lesions, NAWM, and cortex. RESULTS: Compared to HC WM, MS NAWM showed lower fneurite (false discovery rate [FDR]-p = 0.011). In MS patients, WM lesions showed lower fneurite and fsoma compared to both HC and MS NAWM (FDR-p < 0.001 for all). In the cortex, MS patients had lower fneurite and fsoma compared to HC (FDR-p ≤ 0.009). Compared to both HC and RRMS, PMS patients had lower fneurite in NAWM (vs HC: FDR-p < 0.001; vs RRMS: FDR-p = 0.003) and cortex (vs HC: FDR-p < 0.001; vs RRMS: p = 0.031, not surviving FDR correction), and lower cortical fsoma (vs HC: FDR-p < 0.001; vs RRMS: FDR-p = 0.009). Compared to HC, PMS also showed a higher fsoma in NAWM (FDR-p = 0.015). Fneurite and fsoma in the different brain compartments were correlated with age, phenotype, disease duration, disability, WM lesion volumes, normalized brain, cortical, and WM volumes (r from - 0.761 to 0.821, FDR-p ≤ 0.4). CONCLUSIONS: SANDI may represent a clinically relevant model to discriminate different neurodegenerative phenomena that gradually accumulate through MS disease course.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Neuritas/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
18.
Magn Reson Imaging ; 94: 25-35, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35931321

RESUMEN

Several recent multi-compartment diffusion MRI investigations and modeling strategies have utilized the orientationally-averaged, or spherical mean, diffusion-weighted signal to study tissue microstructure of the central nervous system. Most experimental designs sample a large number of diffusion weighted directions in order to calculate the spherical mean signal, however, sampling a subset of these directions may increase scanning efficiency and enable either a decrease in scan time or the ability to sample more diffusion weightings. Here, we aim to determine the minimum number of gradient directions needed for a robust measurement of the spherical mean signal. We used computer simulations to characterize the variation of the measured spherical mean signal as a function of the number of gradient directions, while also investigating the effects of diffusion weighting (b-value), signal-to-noise ratio (SNR), available hardware, and spherical mean fitting strategy. We then utilize empirically acquired data in the brain and spinal cord to validate simulations, showing experimental results are in good agreement with simulations. We summarize these results by providing an intuitive lookup table to facilitate the determination of the minimal number of sampling directions needed for robust spherical mean measurements, and give recommendations based on SNR and experimental conditions.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Relación Señal-Ruido , Imagen de Difusión por Resonancia Magnética/métodos , Difusión , Encéfalo/diagnóstico por imagen , Simulación por Computador
19.
Neuroimage ; 256: 119277, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35523369

RESUMEN

Biophysical models of diffusion in white matter have been center-stage over the past two decades and are essentially based on what is now commonly referred to as the "Standard Model" (SM) of non-exchanging anisotropic compartments with Gaussian diffusion. In this work, we focus on diffusion MRI in gray matter, which requires rethinking basic microstructure modeling blocks. In particular, at least three contributions beyond the SM need to be considered for gray matter: water exchange across the cell membrane - between neurites and the extracellular space; non-Gaussian diffusion along neuronal and glial processes - resulting from structural disorder; and signal contribution from soma. For the first contribution, we propose Neurite Exchange Imaging (NEXI) as an extension of the SM of diffusion, which builds on the anisotropic Kärger model of two exchanging compartments. Using datasets acquired at multiple diffusion weightings (b) and diffusion times (t) in the rat brain in vivo, we investigate the suitability of NEXI to describe the diffusion signal in the gray matter, compared to the other two possible contributions. Our results for the diffusion time window 20-45 ms show minimal diffusivity time-dependence and more pronounced kurtosis decay with time, which is well fit by the exchange model. Moreover, we observe lower signal for longer diffusion times at high b. In light of these observations, we identify exchange as the mechanism that best explains these signal signatures in both low-b and high-b regime, and thereby propose NEXI as the minimal model for gray matter microstructure mapping. We finally highlight multi-b multi-t acquisition protocols as being best suited to estimate NEXI model parameters reliably. Using this approach, we estimate the inter-compartment water exchange time to be 15 - 60 ms in the rat cortex and hippocampus in vivo, which is of the same order or shorter than the diffusion time in typical diffusion MRI acquisitions. This suggests water exchange as an essential component for interpreting diffusion MRI measurements in gray matter.


Asunto(s)
Sustancia Gris , Sustancia Blanca , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Humanos , Neuritas , Ratas , Agua , Sustancia Blanca/diagnóstico por imagen
20.
Neuroimage ; 254: 119135, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35339686

RESUMEN

Diffusion MRI (dMRI) provides unique insights into the neural tissue milieu by probing interactions between diffusing molecules and tissue microstructure. Most dMRI techniques focus on white matter (WM) tissues, nevertheless, interest in gray matter characterizations is growing. The Soma and Neurite Density MRI (SANDI) methodology harnesses a model incorporating water diffusion in spherical objects (assumed to be associated with cell bodies) and in impermeable "sticks" (assumed to represent neurites), which potentially enables the characterization of cellular and neurite densities. Recognising the importance of rodents in animal models of development, aging, plasticity, and disease, we here employ SANDI for in-vivo preclinical imaging and provide a first validation of the methodology by comparing SANDI metrics with cellular density reflected by the Allen mouse brain atlas. SANDI was implemented on a 9.4T scanner equipped with a cryogenic coil, and in-vivo experiments were carried out on N = 6 mice. Pixelwise, ROI-based, and atlas comparisons were performed, magnitude vs. real-valued analyses were compared, and shorter acquisitions with reduced the number of b-value shells were investigated. Our findings reveal good reproducibility of the SANDI parameters, including the sphere and stick fractions, as well as sphere size (CoV < 7%, 12% and 3%, respectively). Additionally, we find a very good rank correlation between SANDI-driven sphere fraction and Allen mouse brain atlas contrast that represents cellular density. We conclude that SANDI is a viable preclinical MRI technique that can greatly contribute to research on brain tissue microstructure.


Asunto(s)
Neuritas , Sustancia Blanca , Animales , Encéfalo/diagnóstico por imagen , Cuerpo Celular , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Imagen por Resonancia Magnética , Ratones , Reproducibilidad de los Resultados , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...