Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34577488

RESUMEN

The detection of obstacles at rail level crossings (RLC) is an important task for ensuring the safety of train traffic. Traffic control systems require reliable sensors for determining the state of anRLC. Fusion of information from a number of sensors located at the site increases the capability for reacting to dangerous situations. One such source is video from monitoring cameras. This paper presents a method for processing video data, using deep learning, for the determination of the state of the area (region of interest-ROI) vital for a safe passage of the train. The proposed approach is validated using video surveillance material from a number of RLC sites in Poland. The films include 24/7 observations in all weather conditions and in all seasons of the year. Results show that the recall values reach 0.98 using significantly reduced processing resources. The solution can be used as an auxiliary source of signals for train control systems, together with other sensor data, and the fused dataset can meet railway safety standards.


Asunto(s)
Aprendizaje Profundo , Vías Férreas , Accidentes de Tránsito , Estaciones del Año , Tiempo (Meteorología)
2.
Waste Manag ; 109: 1-9, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32361385

RESUMEN

This study investigates an image recognition system for the identification and classification of waste electrical and electronic equipment from photos. Its main purpose is to facilitate information exchange regarding the waste to be collected from individuals or from waste collection points, thereby exploiting the wide acceptance and use of smartphones. To improve waste collection planning, individuals would photograph the waste item and upload the image to the waste collection company server, where it would be recognized and classified automatically. The proposed system can be operated on a server or through a mobile app. A novel method of classification and identification using neural networks is proposed for image analysis: a deep learning convolutional neural network (CNN) was applied to classify the type of e-waste, and a faster region-based convolutional neural network (R-CNN) was used to detect the category and size of the waste equipment in the images. The recognition and classification accuracy of the selected e-waste categories ranged from 90 to 97%. After the size and category of the waste is automatically recognized and classified from the uploaded images, e-waste collection companies can prepare a collection plan by assigning a sufficient number of vehicles and payload capacity for a specific e-waste project.


Asunto(s)
Aprendizaje Profundo , Residuos Electrónicos , Humanos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...