Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Robot ; 9(93): eadm8484, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167670

RESUMEN

In contrast with jumping robots made from rigid materials, soft jumpers composed of compliant and elastically deformable materials exhibit superior impact resistance and mechanically robust functionality. However, recent efforts to create stimuli-responsive jumpers from soft materials were limited in their response speed, takeoff velocity, and travel distance. Here, we report a magnetic-driven, ultrafast bistable soft jumper that exhibits good jumping capability (jumping more than 108 body heights with a takeoff velocity of more than 2 meters per second) and fast response time (less than 15 milliseconds) compared with previous soft jumping robots. The snap-through transitions between bistable states form a repeatable loop that harnesses the ultrafast release of stored elastic energy. On the basis of the dynamic analysis, the multimodal locomotion of the bistable soft jumper can be realized: the interwell mode of jumping and the intrawell mode of hopping. These modes are controlled by adjusting the duration and strength of the magnetic field, which endows the bistable soft jumper with robust locomotion capabilities. In addition, it is capable of jumping omnidirectionally with tunable heights and distances. To demonstrate its capability in complex environments, a realistic pipeline with amphibious terrain was established. The jumper successfully finished a simulative task of cleansing water through a pipeline. The design principle and actuating mechanism of the bistable soft jumper can be further extended for other flexible systems.

2.
Nat Mater ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043929

RESUMEN

Robotic tasks that require robust propulsion abilities such as jumping, ejecting or catapulting require power-amplification strategies where kinetic energy is generated from pre-stored energy. Here we report an engineered accumulated strain energy-fracture power-amplification method that is inspired by the pressurized fluidic squirting mechanism of Ecballium elaterium (squirting cucumber plants). We realize a light-driven hydrogel launcher that harnesses fast liquid vapourization triggered by the photothermal response of an embedded graphene suspension. This vapourization leads to appreciable elastic energy storage within the surrounding hydrogel network, followed by rapid elastic energy release within 0.3 ms. These soft hydrogel robots achieve controlled launching at high velocity with a predictable trajectory. The accumulated strain energy-fracture method was used to create an artificial squirting cucumber that disperses artificial seeds over metres, which can further achieve smart seeding through an integrated radio-frequency identification chip. This power-amplification strategy provides a basis for propulsive motion to advance the capabilities of miniaturized soft robotic systems.

3.
Nat Commun ; 15(1): 3719, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698001

RESUMEN

Caustics occur in diverse physical systems, spanning the nano-scale in electron microscopy to astronomical-scale in gravitational lensing. As envelopes of rays, optical caustics result in sharp edges or extended networks. Caustics in structured light, characterized by complex-amplitude distributions, have innovated numerous applications including particle manipulation, high-resolution imaging techniques, and optical communication. However, these applications have encountered limitations due to a major challenge in engineering caustic fields with customizable propagation trajectories and in-plane intensity profiles. Here, we introduce the "compensation phase" via 3D-printed metasurfaces to shape caustic fields with curved trajectories in free space. The in-plane caustic patterns can be preserved or morphed from one structure to another during propagation. Large-scale fabrication of these metasurfaces is enabled by the fast-prototyping and cost-effective two-photon polymerization lithography. Our optical elements with the ultra-thin profile and sub-millimeter extension offer a compact solution to generating caustic structured light for beam shaping, high-resolution microscopy, and light-matter-interaction studies.

4.
Gels ; 10(4)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38667638

RESUMEN

Bacterial infections impede the wound healing process and can trigger local or systemic inflammatory responses. Therefore, there is an urgent need to develop a dressing with antimicrobial and anti-inflammatory properties to promote the healing of infected wounds. In this study, BA/COs/NO-PL/AL hydrogels were obtained by adding brevilin A (BA) camellia oil (CO) submicron emulsion and nitric oxide (NO) to hydrogels consisting of sodium alginate (AL) and Pluronic F127 (PL). The hydrogels were characterized through dynamic viscosity analysis, differential scanning calorimetry, and rheology. They were evaluated through anti-inflammatory, antimicrobial, and wound healing property analyses. The results showed that BA/COs/NO-PL/AL hydrogels were thermo-responsive and had good ex vivo and in vivo anti-inflammatory activity, and they also exhibited strong antimicrobial activity against methicillin-resistant Staphylococcus aureus Pseudomonas aeruginosa (MRPA) and methicillin-resistant Staphylococcus aureus (MRSA). They were able to effectively promote healing of the infected wound model and reduce inflammation and bacterial burden. H&E and Masson's staining showed that BA/COs/NO-PL/AL hydrogels promoted normal epithelial formation and collagen deposition. In conclusion, BA/COs/NO-PL/AL hydrogels are promising candidates for promoting the healing of infected wounds.

5.
Adv Mater ; 36(11): e2310145, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38016424

RESUMEN

Tactile sensory organs for sensing 3D force, such as human skin and fish lateral lines, are indispensable for organisms. With their sensory properties enhanced by layered structures, typical sensory organs can achieve excellent perception as well as protection under frequent mechanical contact. Here, inspired by these layered structures, a split-type magnetic soft tactile sensor with wireless 3D force sensing and a high accuracy (1.33%) fabricated by developing a centripetal magnetization arrangement and theoretical decoupling model is introduced. The 3D force decoupling capability enables it to achieve a perception close to that of human skin in multiple dimensions without complex calibration. Benefiting from the 3D force decoupling capability and split design with a long effective distance (>20 mm), several sensors are assembled in air and water to achieve delicate robotic operation and water flow-based navigation with an offset <1.03%, illustrating the extensive potential of magnetic tactile sensors in flexible electronics, human-machine interactions, and bionic robots.


Asunto(s)
Fenómenos Mecánicos , Tacto , Animales , Humanos , Piel , Agua , Fenómenos Magnéticos
6.
Sci Adv ; 9(50): eadj0883, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100592

RESUMEN

The magnetic microrobots promise benefits in minimally invasive cell-based therapy. However, they generally suffer from an inevitable compromise between their magnetic responsiveness and biomedical functions. Herein, we report a modularized microrobot consisting of magnetic actuation (MA) and cell scaffold (CS) modules. The MA module with strong magnetism and pH-responsive deformability and the CS module with cell loading-release capabilities were fabricated by three-dimensional printing technique. Subsequently, assembly of modules was performed by designing a shaft-hole structure and customizing their relative dimensions, which enabled magnetic navigation in complex environments, while not deteriorating the cellular functionalities. On-demand disassembly at targeted lesion was then realized to facilitate CS module delivery and retrieval of the MA module. Furthermore, the feasibility of proposed system was validated in an in vivo rabbit bile duct. Therefore, this work presents a modular design-based strategy that enables uncompromised fabrication of multifunctional microrobots and stimulates their development for future cell-based therapy.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Sistemas de Liberación de Medicamentos , Animales , Conejos , Sistemas de Liberación de Medicamentos/métodos , Impresión Tridimensional
7.
Sci Adv ; 9(51): eadj9262, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38117894

RESUMEN

Flat optics consisting of nanostructures of high-refractive index materials produce lenses with thin form factors that tend to operate only at specific wavelengths. Recent attempts to achieve achromatic lenses uncover a trade-off between the numerical aperture (NA) and bandwidth, which limits performance. Here, we propose a new approach to design high-NA, broadband, and polarization-insensitive multilayer achromatic metalenses (MAMs). We combine topology optimization and full-wave simulations to inversely design MAMs and fabricate the structures in low-refractive index materials by two-photon polymerization lithography. MAMs measuring 20 µm in diameter operating in the visible range of 400 to 800 nm with 0.5 and 0.7 NA were achieved with efficiencies of up to 42%. We demonstrate broadband imaging performance of the fabricated MAM under white light and RGB narrowband illuminations. These results highlight the potential of the 3D-printed multilayer structures for realizing broadband and multifunctional meta-devices with inverse design.

8.
Nat Commun ; 14(1): 5876, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735573

RESUMEN

Two-photon polymerization lithography is promising for producing three-dimensional structures with user-defined micro- and nanoscale features. Additionally, shrinkage by thermolysis can readily shorten the lattice constant of three-dimensional photonic crystals and enhance their resolution and mechanical properties; however, this technique suffers from non-uniform shrinkage owing to substrate pinning during heating. Here, we develop a simple method using poly(vinyl alcohol)-assisted uniform shrinking of three-dimensional printed structures. Microscopic three-dimensional printed objects are picked and placed onto a receiving substrate, followed by heating to induce shrinkage. We show the successful uniform heat-shrinking of three-dimensional prints with various shapes and sizes, without sacrificial support structures, and observe that the surface properties of the receiving substrate are important factors for uniform shrinking. Moreover, we print a three-dimensional mascot model that is then uniformly shrunk, producing vivid colors from colorless woodpile photonic crystals. The proposed method has significant potential for application in mechanics, optics, and photonics.

9.
Nat Commun ; 14(1): 4428, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481621

RESUMEN

Soft electromagnetic devices have great potential in soft robotics and biomedical applications. However, existing soft-magneto-electrical devices would have limited hybrid functions and suffer from damaging stress concentrations, delamination or material leakage. Here, we report a hybrid magnetic-mechanical-electrical (MME) core-sheath fiber to overcome these challenges. Assisted by the coaxial printing method, the MME fiber can be printed into complex 2D/3D MME structures with integrated magnetoactive and conductive properties, further enabling hybrid functions including programmable magnetization, somatosensory, and magnetic actuation along with simultaneous wireless energy transfer. To demonstrate the great potential of MME devices, precise and minimally invasive electro-ablation was performed with a flexible MME catheter with magnetic control, hybrid actuation-sensing was performed by a durable somatosensory MME gripper, and hybrid wireless energy transmission and magnetic actuation were demonstrated by an untethered soft MME robot. Our work thus provides a material design strategy for soft electromagnetic devices with unexplored hybrid functions.

10.
Nano Lett ; 23(12): 5520-5527, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37290093

RESUMEN

Structural colors in homogeneous elastomeric materials predominantly exhibit uniform color changes under applied strains. However, juxtaposing mechanochromic pixels that exhibit distinct responses to applied strain remains challenging, especially on the microscale where the demand for miscellaneous spectral information increases. Here, we present a method to engineer microscale switchable color pixels by creating localized inhomogeneous strain fields at the level of individual microlines. Trenches produced by transfer casting from 2.5D structures into elastomers exhibit a uniform structural color in the unstretched state due to interference and scattering effects, while they show different colors under an applied uniaxial strain. This programmable topographic change resulting in color variation arises from strain mismatch between layers and trench width. We utilized this effect to achieve the encryption of text strings with Morse code. The effective and facile design principle is promising for diverse optical devices based on dynamic structures and topographic changes.

11.
Sci Adv ; 9(10): eade8622, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36888700

RESUMEN

Electrical stimulation is a promising method to modulate gastrointestinal disorders. However, conventional stimulators need invasive implantation and removal surgeries associated with risks of infection and secondary injuries. Here, we report a battery-free and deformable electronic esophageal stent for wireless stimulation of the lower esophageal sphincter in a noninvasive fashion. The stent consists of an elastic receiver antenna infilled with liquid metal (eutectic gallium-indium), a superelastic nitinol stent skeleton, and a stretchable pulse generator that jointly enables 150% axial elongation and 50% radial compression for transoral delivery through the narrow esophagus. The compliant stent adaptive to the dynamic environment of the esophagus can wirelessly harvest energy through deep tissue. Continuous electrical stimulations delivered by the stent in vivo using pig models significantly increase the pressure of the lower esophageal sphincter. The electronic stent provides a noninvasive platform for bioelectronic therapies in the gastrointestinal tract without the need for open surgery.


Asunto(s)
Esfínter Esofágico Inferior , Tracto Gastrointestinal , Animales , Porcinos , Stents , Presión , Estimulación Eléctrica
12.
Nat Commun ; 13(1): 7514, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473857

RESUMEN

The geometric reconfigurations in three-dimensional morphable structures have a wide range of applications in flexible electronic devices and smart systems with unusual mechanical, acoustic, and thermal properties. However, achieving the highly controllable anisotropic transformation and dynamic regulation of architected materials crossing different scales remains challenging. Herein, we develop a magnetic regulation approach that provides an enabling technology to achieve the controllable transformation of morphable structures and unveil their dynamic modulation mechanism as well as potential applications. With buckling instability encoded heterogeneous magnetization profiles inside soft architected materials, spatially and temporally programmed magnetic inputs drive the formation of a variety of anisotropic morphological transformations and dynamic geometric reconfiguration. The introduction of magnetic stimulation could help to predetermine the buckling states of soft architected materials, and enable the formation of definite and controllable buckling states without prolonged magnetic stimulation input. The dynamic modulations can be exploited to build systems with switchable fluidic properties and are demonstrated to achieve capabilities of fluidic manipulation, selective particle trapping, sensitivity-enhanced biomedical analysis, and soft robotics. The work provides new insights to harness the programmable and dynamic morphological transformation of soft architected materials and promises benefits in microfluidics, programmable metamaterials, and biomedical applications.


Asunto(s)
Acústica , Electrónica , Anisotropía , Microfluídica , Solución de Problemas
13.
ACS Appl Mater Interfaces ; 14(49): 55028-55038, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36458663

RESUMEN

Liquid metal embedded elastomers (LMEEs) are composed of a soft polymer matrix embedded with droplets of metal alloys that are liquid at room temperature. These soft matter composites exhibit exceptional combinations of elastic, electrical, and thermal properties that make them uniquely suited for applications in flexible electronics, soft robotics, and thermal management. However, the fabrication of LMEE structures has primarily relied on rudimentary techniques that limit patterning to simple planar geometries. Here, we introduce an approach for direct ink write (DIW) printing of a printable LMEE ink to create three-dimensional shapes with various designs. We use eutectic gallium-indium (EGaIn) as the liquid metal, which reacts with oxygen to form an electrically insulating oxide skin that acts as a surfactant and stabilizes the droplets for 3D printing. To rupture the oxide skin and achieve electrical conductivity, we encase the LMEE in a viscoelastic polymer and apply acoustic shock. For printed composites with a 80% LM volume fraction, this activation method allows for a volumetric electrical conductivity of 5 × 104 S cm-1 (80% LM volume)─significantly higher than what had been previously reported with mechanically sintered EGaIn-silicone composites. Moreover, we demonstrate the ability to print 3D LMEE interfaces that provide enhanced charge transfer for a triboelectric nanogenerator (TENG) and improved thermal conductivity within a thermoelectric device (TED). The 3D printed LMEE can be integrated with a highly soft TED that is wearable and capable of providing cooling/heating to the skin through electrical stimulation.

14.
ACS Nano ; 16(11): 19271-19280, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36227202

RESUMEN

Tactile recognition is among the basic survival skills of human beings, and advances in tactile sensor technology have been adopted in various fields, bringing benefits such as outstanding performance in manipulating objects and general human-robot interactions. However, promoting enhanced perception of the existing tactile sensors is limited by their sensor array arrangement and wire-connected design. Here we present a wireless flexible magnetic tactile sensor (FMTS) consisting of a multidirection magnetized flexible film (perception module) and a contactless Hall sensor (signal receiving module). The flexible magnetic film is composed of NdFeB microparticles and soft silicone elastomer microparticles, and it transfers the unambiguous transduction of external force position and magnitude into magnetic signals. Benefiting from the specific magnetization arrangement and clustering algorithm, only one Hall sensor is needed in FMTS to perceive the magnitude and position of the contact spot simultaneously with super-resolution (2.1 mm average error) on a large area (3600 mm2), and the effective working distance is also greatly extended (∼30 mm), allowing for the full softness and adaptability to diverse conditions. We anticipate that this design will promote the development of soft tactile sensors and their integration into human-robot interaction and humanoid robot perception.


Asunto(s)
Fenómenos Mecánicos , Tacto , Humanos , Tacto/fisiología , Fenómenos Magnéticos
15.
Sci Adv ; 8(25): eabn8932, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35731876

RESUMEN

Intelligent magnetic soft robots capable of programmable structural changes and multifunctionality modalities depend on material architectures and methods for controlling magnetization profiles. While some efforts have been made, there are still key challenges in achieving programmable magnetization profile and creating heterogeneous architectures. Here, we directly embed programmed magnetization patterns (magnetization modules) into the adhesive sticker layers to construct soft robots with programmable magnetization profiles and geometries and then integrate spatially distributed functional modules. Functional modules including temperature and ultraviolet light sensing particles, pH sensing sheets, oil sensing foams, positioning electronic component, circuit foils, and therapy patch films are integrated into soft robots. These test beds are used to explore multimodal robot locomotion and various applications related to environmental sensing and detection, circuit repairing, and gastric ulcer coating, respectively. This proposed approach to engineering modular soft material systems has the potential to expand the functionality, versatility, and adaptability of soft robots.

16.
Adv Mater ; 34(17): e2109126, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35196405

RESUMEN

The efficient motility of invertebrates helps them survive under evolutionary pressures. Reconstructing the locomotion of invertebrates and decoupling the influence of individual basic motion are crucial for understanding their underlying mechanisms, which, however, generally remain a challenge due to the complexity of locomotion gaits. Herein, a magnetic soft robot to reproduce midge larva's key natural swimming gaits is developed, and the coupling effect between body curling and rotation on motility is investigated. Through the authors' systematically decoupling studies using programmed magnetic field inputs, the soft robot (named LarvaBot) experiences various coupled gaits, including biomimetic side-to-side flexures, and unveils that the optimal rotation amplitude and the synchronization of curling and rotation greatly enhance its motility. The LarvaBot achieves fast locomotion and upstream capability at the moderate Reynolds number regime. The soft robotics-based platform provides new insight to decouple complex biological locomotion, and design programmed swimming gaits for the fast locomotion of soft-bodied swimmers.


Asunto(s)
Robótica , Animales , Biomimética , Larva , Locomoción , Natación
17.
Adv Mater ; 32(46): e2002929, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33043492

RESUMEN

Soft composites that use droplets of gallium-based liquid metal (LM) as the dispersion phase have the potential for transformative impact in multifunctional material engineering. However, it is unclear whether percolation pathways of LM can support high electrical conductivity in a wide range of matrix materials. This issue is addressed through an approach to LM composite synthesis that focuses on the interrelated effects of matrix curing/solidification and droplet formation. The combined influence of LM concentration, particle size, and sedimentation is explored. By developing this approach, the functionalities that have been demonstrated with LM composites can be generalized to other matrix materials that impart additional functionality. Specifically, composites are synthesized using a biodegradable/reprocessable plastic (polycaprolactone), a hydrogel (poly(vinyl alcohol)), and a processable rubber (a styrene-ethylene-butylene-styrene derivative) to demonstrate wide applicability. This method enables synthesis of composites: i) with high stretchability and negligible electromechanical coupling (>600% strain); ii) with Joule-heated healing and reprocessability; iii) with electrical and mechanical self-healing; and iv) that can be printed. This approach to controlled assembly represents a widely applicable technique for creating new classes of LM composites with unprecedented multifunctionality.

18.
J Mater Chem B ; 8(21): 4539-4551, 2020 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-32373836

RESUMEN

Soft robots represent an emerging class of biologically-inspired machines that are primarily composed of elastomers, fluids, and other forms of soft matter. Current examples include crawling and swimming robots that exhibit the mobility, mechanical compliance, and deformability of various classes of soft biological organisms, ranging from cephalopods and larvae to marine fish and reptiles. Rather than using electrical motors, soft robots are powered with "artificial muscle" actuators that change shape and stiffness in response to controlled stimulation. In recent years, conductive shape memory materials have become especially popular for soft robot actuation due to the ability to stimulate these materials with on-board microelectronics and miniature batteries. Here, we review recent progress in the development of artificial muscle using shape memory materials that can be stimulated through electrical activation. This includes the use of shape memory alloy (SMA) to create fully untethered soft robots capable of biologically-relevant locomotion speeds as well as recent progress in engineering liquid crystal elastomer (LCE) composites that are capable of robust electrically-powered actuation.


Asunto(s)
Materiales Biomiméticos/química , Elastómeros/química , Robótica , Materiales Inteligentes , Animales , Humanos , Robótica/instrumentación
19.
Proc Natl Acad Sci U S A ; 116(43): 21438-21444, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591232

RESUMEN

Natural soft tissue achieves a rich variety of functionality through a hierarchy of molecular, microscale, and mesoscale structures and ordering. Inspired by such architectures, we introduce a soft, multifunctional composite capable of a unique combination of sensing, mechanically robust electronic connectivity, and active shape morphing. The material is composed of a compliant and deformable liquid crystal elastomer (LCE) matrix that can achieve macroscopic shape change through a liquid crystal phase transition. The matrix is dispersed with liquid metal (LM) microparticles that are used to tailor the thermal and electrical conductivity of the LCE without detrimentally altering its mechanical or shape-morphing properties. Demonstrations of this composite for sensing, actuation, circuitry, and soft robot locomotion suggest the potential for versatile, tissue-like multifunctionality.

20.
ACS Appl Mater Interfaces ; 11(45): 42561-42570, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31638761

RESUMEN

We introduce an elastomer composite filled with silver (Ag) flakes and Ag-coated poly(dimethylsiloxane) (PDMS) beads that exhibits electrical conductivity that is 2 orders of magnitude greater than that of elastomers in which the same concentration of Ag filler is uniformly dispersed. In addition to the dramatic enhancement in conductivity, these composites exhibit high mechanical compliance (strain limit, >100%) and robust thermal stability (conductivity change, <10% at 150 °C). The incorporation of Ag-coated PDMS beads introduces an effective phase segregation in which Ag flakes are confined to the "grain boundaries" between the embedded beads. This morphological control aids in the percolation of the Ag flakes and the formation of conductive bridges between neighboring Ag shells. The confinement of Ag flakes also suppresses thermal expansion and changes in electrical conductivity of the percolating networks when the composite is heated. We demonstrate potential applications of thermally stable elastic conductors in wearable devices and soft robotics by fabricating a highly stretchable antenna for a "smart" furnace glove and a strain sensor for soft gripper operation in hot water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...